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Exam Information

Dates

• Exam: Wednesday 22 January

• Resit: Wednesday 12 February

Structure

• Approximately 25 questions

• Mixture of multiple-choice and short-answer questions

• Closed-book

• Remindo, computer-based exam
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R Topics
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R Fundamentals
Objects and assignment

1:3

[1] 1 2 3

x <- 1:3

x

[1] 1 2 3

x + 4

[1] 5 6 7

Data types

• Vectors, Matrices

• Lists, Data frames

• Factors
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R Fundamentals

User-defined functions

helloWorld <- function() cat("Hello World!")

helloWorld()

Hello World!

add <- function(x, y) x + y

add(2, 3)

[1] 5

add(add(1, 2), 3)

[1] 6
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Tidyverse Fundamentals

Working with pipes

library(magrittr)

iris %$% table(Species)

Species

setosa versicolor virginica

50 50 50

add(1, 2) %>% add(3)

[1] 6
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Tidyverse Fundamentals

Working with dplyr and ggplot

library(dplyr)

library(ggplot2)

iris %>%

filter(Species != "virginica") %>%

mutate(petal_ratio = Petal.Length / Petal.Width) %>%

ggplot(aes(Species, petal_ratio)) +

geom_boxplot() +

ylab("Petal Length to Width Ratio")
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Tidyverse Fundamentals
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Manipulating Model Objects

fit1 <- lm(Petal.Length ~ Sepal.Length + Species, data = iris)

fit2 <- lm(Petal.Length ~ Sepal.Length*Species, data = iris)

coef(fit1)

(Intercept) Sepal.Length Speciesversicolor Speciesvirginica

-1.7023422 0.6321099 2.2101378 3.0900021

summary(fit2)$fstatistic

value numdf dendf

1333.265 5.000 144.000
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Manipulating Model Objects

anova(fit2, fit1)

Analysis of Variance Table

Model 1: Petal.Length ~ Sepal.Length * Species

Model 2: Petal.Length ~ Sepal.Length + Species

Res.Df RSS Df Sum of Sq F Pr(>F)

1 144 9.8179

2 146 11.6571 -2 -1.8393 13.489 4.272e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Manipulating Model Objects

fit1 %>% rstudent() %>% plot()
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Linear Regression
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Simple Linear Regression

In linear regression, we want to find
the best fit line:

Ŷ = 𝛽0 + 𝛽1X
• For any Xn, the corresponding Ŷn

represents the model-implied,
conditional mean of Y .
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Simple Linear Regression

In linear regression, we want to find
the best fit line:

Ŷ = 𝛽0 + 𝛽1X
• For any Xn, the corresponding Ŷn

represents the model-implied,
conditional mean of Y .

After accounting for the estimation
error, we get the full regression
equation:

Y = 𝛽0 + 𝛽1X + 𝜀
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Residuals as the Basis of Estimation

We use the residuals, 𝜀n, to estimate
the model.

RSS =

N∑︁
n=1

𝜀2
n =

N∑︁
n=1

(
Yn − Ŷn

)2

=

N∑︁
n=1

(
Yn − 𝛽0 − 𝛽1Xn

)2
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Assumptions

1. The model is linear in the parameters.
◦ Otherwise: We are not working with linear regression.

2. The predictor matrix is full rank.
◦ Otherwise: The model is not estimable.

3. The predictors are strictly exogenous.
◦ Otherwise: The estimated regression coefficients will be biased.

4. The errors have constant, finite variance.
◦ Otherwise: Standard errors will be biased.

5. The errors are uncorrelated.
◦ Otherwise: Standard errors will be biased.

6. The errors are normally distributed.
◦ Otherwise: Small-sample inferences and some estimates are not justified.
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Moderation

17 of 41



Moderated Regression

The effect of X on Y varies as a function of Z.
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Interpretation

Given the following equation:

Y = 𝛽0 + 𝛽1X + 𝛽2Z + 𝛽3XZ + 𝜀

• 𝛽3 quantifies the effect of Z on the focal effect (the X → Y effect).

◦ For a unit change in Z, 𝛽3 is the expected change in the effect of X on Y .

• 𝛽1 and 𝛽2 are conditional effects.
◦ Interpreted where the other predictor is zero.
◦ For a unit change in X, 𝛽1 is the expected change in Y , when Z = 0.
◦ For a unit change in Z, 𝛽2 is the expected change in Y , when X = 0.
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Continuous Moderators

## Load data:

diabetes <- readRDS(paste0(dataDir, "diabetes.rds"))

## Moderated Model:

out2 <- lm(bp ~ bmi * ldl, data = diabetes)

partSummary(out2, -c(1, 2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.480616 14.291677 1.013 0.311514

bmi 2.867825 0.541312 5.298 1.86e-07

ldl 0.448771 0.127160 3.529 0.000461

bmi:ldl -0.015352 0.004716 -3.255 0.001221

Residual standard error: 12.54 on 438 degrees of freedom

Multiple R-squared: 0.1834, Adjusted R-squared: 0.1778

F-statistic: 32.78 on 3 and 438 DF, p-value: < 2.2e-16
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Visualizing the Interaction

We can get a better idea of the
patterns of moderation by plotting
the focal effect at conditional values
of the moderator.
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Categorical Moderators

## Load data:

socSup <- readRDS("../data/social_support.rds")

## Estimate the moderated regression model:

out4 <- lm(bdi ~ tanSat * sex, data = socSup)

partSummary(out4, -c(1, 2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 20.8478 6.2114 3.356 0.00115

tanSat -0.5772 0.3614 -1.597 0.11372

sexmale 14.3667 12.2054 1.177 0.24223

tanSat:sexmale -0.9482 0.7177 -1.321 0.18978

Residual standard error: 9.267 on 91 degrees of freedom

Multiple R-squared: 0.08955, Adjusted R-squared: 0.05954

F-statistic: 2.984 on 3 and 91 DF, p-value: 0.03537
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Visualizing Categorical Moderation
ŶBDI = 20.85 − 0.58Xtsat + 14.37Zmale

− 0.95XtsatZmale
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Prediction
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Prediction Example

Let’s fit the following model using the diabetes data:

YLDL = 𝛽0 + 𝛽1XBP + 𝛽2Xgluc + 𝛽3XBMI + 𝜀

Training this model on the first N = 400 patients’ data produces the
following fitted model:

ŶLDL = 22.135 + 0.089XBP + 0.498Xgluc + 1.48XBMI

Suppose a new patient presents with BP = 121, gluc = 89, and
BMI = 30.6. We can predict their LDL score by:

ŶLDL = 22.135 + 0.089(121) + 0.498(89) + 1.48(30.6)
= 122.463
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Interval Estimates Example
Two flavors of interval to quantify prediction uncertainty:
1. Confidence intervals
2. Prediction intervals

In our example, we get the following 95% interval estimates:

95% CIŶ = [115.6; 129.33]

95% PI = [66.56; 178.37]

• We can be 95% confident that the average LDL of patients with
Glucose = 89, BP = 121, and BMI = 30.6 will be somewhere between
115.6 and 129.33.

• We can be 95% confident that the LDL of a specific patient with
Glucose = 89, BP = 121, and BMI = 30.6 will be somewhere between
66.56 and 178.37.
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Model Fit
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Model Fit
We quantify the proportion of the outcome’s variance that is explained by
our model using the R2 statistic:

R2 =
TSS − RSS

TSS = 1 − RSS
TSS

where

TSS =

N∑︁
n=1

(
Yn − Ȳ

)2
= Var(Y) × (N − 1)

For the model we estimated in the above prediction example, we get:

R2 = 1 − 315383
361704 ≈ 0.13
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Model Fit for Prediction

We use the mean squared error (MSE) to assess predictive performance.

MSE =
1
N

N∑︁
n=1

(
Yn − Ŷn

)2

=
1
N

N∑︁
n=1

©­«Yn − 𝛽0 −
P∑︁

p=1
𝛽pXnp

ª®¬
2

=
RSS

N
For our example problem, we get:

MSE =
315383

400 ≈ 788.46
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Information Criteria
We can use information criteria to quickly compare non-nested (or nested)
models while accounting for model complexity.

• Akaike’s Information Criterion (AIC)

AIC = 2K − 2ℓ̂ (𝜃 |X)

• Bayesian Information Criterion (BIC)

BIC = K ln(N) − 2ℓ̂ (𝜃 |X)

For our example, we get the following estimates of AIC and BIC:

AIC = 2(3) − 2(−1901.59)
= 3813.18

BIC = 3 ln(400) − 2(−1901.59)
= 3833.14
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Logistic Regression
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Probabilities & Odds

Complete
Sex No Yes

Female 95 147
Male 753 1540

P(C|M) = 1540
1540 + 753 = 0.672

P(C|F) = 147
147 + 95 = 0.607

O(C|M) = 1540
753 = 2.045 ≈ 0.672

1 − 0.672

O(C|F) = 147
95 = 1.547 ≈ 0.607

1 − 0.607
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The Generalized Linear Model

Every GLM is built from three components:

1. The systematic component, 𝜂.
◦ A linear function of the predictors, {Xp}.
◦ Describes the association between X and Y .

2. The link function, g(𝜇Y ).
◦ Transforms 𝜇Y so that it can take any value on the real line.

3. The random component, P(Y |g−1 (𝜂))
◦ The distribution of the observed Y .
◦ Quantifies the error variance around 𝜂.
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The Logistic Regression Model
The logistic regression model can be represented as:

Y ∼ Bin(𝜋, 1)

logit(𝜋) = 𝛽0 +
P∑︁

p=1
𝛽pXp

The fitted model can be represented as:

logit(𝜋) = 𝛽0 +
P∑︁

p=1
𝛽pXp

To convert fitted values, 𝜂 = 𝛽0 +∑P
p=1 𝛽pXp, from a logit scale to a

probability scale, we apply the logistic function:

logistic(𝜂) = e𝜂

1 + e𝜂

34 of 41



Logistic Regression Example

## Coarsen the blood glucose variable:

diabetes %<>% mutate(highGlu = as.numeric(glu > 90))

## Estimate the model:

out1 <- glm(highGlu ~ age + bmi + bp, data = diabetes, family = binomial())

partSummary(out1, -c(1, 2))

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 610.42 on 441 degrees of freedom

Residual deviance: 538.18 on 438 degrees of freedom

AIC: 546.18

Number of Fisher Scoring iterations: 4
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Assumptions

We can state the assumptions of logistic regression as follows:
1. The predictors are linearly related to logit(𝜋).
2. The predictor matrix is full-rank.
3. The outcome is iid binomial with mean 𝜋n = logistic (𝜂n).

Unlike linear regression, we don’t need to assume
• Constant, finite error variance
• Normally distributed errors

For computational reasons, we also need the following:
• Large (enough) sample
• Relatively well-balance outcome
• No perfect prediction
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Classification
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Classification Example

Say we want to classify a new patient into either the “high glucose” group
or the “not high glucose” group using the model fit above.
• Assume this patient has the following characteristics:

◦ They are 57 years old
◦ Their BMI is 28
◦ Their average blood pressure is 92

First we plug their predictor data into the fitted model to get their
model-implied 𝜂:

𝜂 = −6.479 + 0.035 × 57 + 0.107 × 28 + 0.023 × 92
= 0.572
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Classification Example

Next we convert the predicted 𝜂 value into a model-implied success
probability by applying the logistic function:

𝜋 = logistic(0.572) = e0.572

1 + e0.572 = 0.639

Finally, to make the classification, assume a threshold of 𝜋 = 0.5 as the
decision boundary.

• Because 0.639 > 0.5 we would classify this patient into the “high
glucose” group.
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Confusion Matrix

Predicted
True Low High
Low 123 82
High 62 175

Confusion Matrix of Blood Glucose Level

Sensitivity =
175

175 + 62 = 0.738

Specificity =
123

123 + 82 = 0.6

Accuracy =
175 + 123

175 + 123 + 62 + 82 = 0.674
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ROC Curve
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