Course Summary

Fundamental Techniques in Data Science

Outline

Exam Information

R Topics

Linear Regression
Assumptions
Moderation
Prediction
Interval Estimates for Prediction

Model Fit

Logistic Regression
Probabilities \& Odds
Assumptions
Classification
Evaluating Classification Performance

Exam Information

Dates

- Exam: Wednesday 24 January
- Resit: Monday 26 February

Structure

- Approximately 25 questions
- Mixture of multiple-choice and short-answer questions
- Closed-book
- Remindo, computer-based exam

R TOPICS

R Fundamentals

Objects and assignment

```
1:3
[1] 12 3
x <- 1:3
x
[1] 1 2 3
x + 4
[1] 5 6 7
```

Data types

- Vectors, Matrices
- Lists, Data frames
- Factors

R Fundamentals

User-defined functions

```
helloWorld <- function() cat("Hello World!")
helloWorld()
Hello World!
add <- function(x, y) x + y
add (2, 3)
[1] 5
add(add(1, 2), 3)
[1] 6
```


Tidyverse Fundamentals

Working with pipes

```
library(magrittr)
iris %$% table(Species)
Species
    setosa versicolor virginica
        50 50 50
add(1, 2) %>% add(3)
[1] 6
```


Tidyverse Fundamentals

Working with dplyr and ggplot

```
library(dplyr)
library(ggplot2)
iris %>%
    filter(Species != "virginica") %>%
    mutate(petal_ratio = Petal.Length / Petal.Width) %>%
    ggplot(aes(Species, petal_ratio)) +
    geom_boxplot() +
    ylab("Petal Length to Width Ratio")
```


Tidyverse Fundamentals

Species

Manipulating Model Objects

```
fit1 <- lm(Petal.Length ~ Sepal.Length + Species, data = iris)
fit2 <- lm(Petal.Length ~ Sepal.Length*Species, data = iris)
coef(fit1)
    (Intercept) Sepal.Length Speciesversicolor Speciesvirginica
    -1.7023422
    0.6321099 2.2101378
    3.0900021
summary(fit2)$fstatistic
\begin{tabular}{rrr} 
value & numdf & dendf \\
1333.265 & 5.000 & 144.000
\end{tabular}
```


Manipulating Model Objects

```
anova(fit2, fit1)
Analysis of Variance Table
Model 1: Petal.Length ~ Sepal.Length * Species
Model 2: Petal.Length ~ Sepal.Length + Species
    Res.Df RSS Df Sum of Sq F Pr (>F)
1 144 9.8179
2 146 11.6571 -2 -1.8393 13.489 4.272e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Manipulating Model Objects

```
fit1 \%>\% rstudent() \%>\% plot()
```


LINEAR REGRESSION

Simple Linear Regression

In linear regression, we want to find the best fit line:

$$
\hat{Y}=\hat{\beta}_{0}+\hat{\beta}_{1} X
$$

- For any X_{n}, the corresponding \hat{Y}_{n} represents the model-implied, conditional mean of Y.

Simple Linear Regression

In linear regression, we want to find the best fit line:

$$
\hat{Y}=\hat{\beta}_{0}+\hat{\beta}_{1} X
$$

- For any X_{n}, the corresponding \hat{Y}_{n} represents the model-implied, conditional mean of Y.

After accounting for the estimation error, we get the full regression equation:

$$
Y=\hat{\beta}_{0}+\hat{\beta}_{1} X+\hat{\varepsilon}
$$

Residuals as the Basis of Estimation

We use the residuals, $\hat{\varepsilon}_{n}$, to estimate the model.

$$
\begin{aligned}
R S S & =\sum_{n=1}^{N} \hat{\varepsilon}_{n}^{2}=\sum_{n=1}^{N}\left(Y_{n}-\hat{Y}_{n}\right)^{2} \\
& =\sum_{n=1}^{N}\left(Y_{n}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{n}\right)^{2}
\end{aligned}
$$

Assumptions

1. The model is linear in the parameters.

- Otherwise: We are not working with linear regression.

2. The predictor matrix is full rank.

- Otherwise: The model is not estimable.

3. The predictors are strictly exogenous.

- Otherwise: The estimated regression coefficients will be biased.

4. The errors have constant, finite variance.

- Otherwise: Standard errors will be biased.

5. The errors are uncorrelated.

- Otherwise: Standard errors will be biased.

6. The errors are normally distributed.

- Otherwise: Small-sample inferences and some estimates are not justified.

MODERATION

Moderated Regression

The effect of X on Y varies as a function of Z.

Interpretation

Given the following equation:

$$
Y=\hat{\beta}_{0}+\hat{\beta}_{1} X+\hat{\beta}_{2} Z+\hat{\beta}_{3} X Z+\hat{\varepsilon}
$$

- $\hat{\beta}_{3}$ quantifies the effect of Z on the focal effect (the $X \rightarrow Y$ effect).
- For a unit change in $Z, \hat{\beta}_{3}$ is the expected change in the effect of X on Y.
- $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ are conditional effects.
- Interpreted where the other predictor is zero.
- For a unit change in $X, \hat{\beta}_{1}$ is the expected change in Y, when $Z=0$.
- For a unit change in $Z, \hat{\beta}_{2}$ is the expected change in Y, when $X=0$.

Continuous Moderators

```
## Load data:
diabetes <- readRDS(paste0(dataDir, "diabetes.rds"))
## Moderated Model:
out2 <- lm(bp ~ bmi * ldl, data = diabetes)
partSummary(out2, -c(1, 2))
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.480616 14.291677 1.013 0.311514
bmi 2.867825 0.541312 5.298 1.86e-07
ldl 0.448771 0.127160 3.529 0.000461
bmi:ldl -0.015352 0.004716 -3.255 0.001221
Residual standard error: 12.54 on 438 degrees of freedom
Multiple R-squared: 0.1834, Adjusted R-squared: 0.1778
F-statistic: 32.78 on 3 and 438 DF, p-value: < 2.2e-16
```


Visualizing the Interaction

We can get a better idea of the patterns of moderation by plotting the focal effect at conditional values of the moderator.

Categorical Moderators

```
## Load data:
socSup <- readRDS("../data/social_support.rds")
## Estimate the moderated regression model:
out4 <- lm(bdi ~ tanSat * sex, data = socSup)
partSummary(out4, -c(1, 2))
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 20.8478 6.2114 3.356 0.00115
tanSat -0.5772 0.3614 -1.597 0.11372
sexmale 14.3667 12.2054 1.177 0.24223
tanSat:sexmale -0.9482 0.7177 -1.321 0.18978
Residual standard error: 9.267 on 91 degrees of freedom Multiple R-squared: 0.08955, Adjusted R-squared: 0.05954 F-statistic: 2.984 on 3 and 91 DF, p-value: 0.03537
```


Visualizing Categorical Moderation

$$
\begin{aligned}
\hat{Y}_{\text {BDI }} & =20.85-0.58 X_{\text {tsat }}+14.37 Z_{\text {male }} \\
& =0.95 X_{\text {tsat }} Z_{\text {male }}
\end{aligned}
$$

Moderation by Gender

$$
\hat{Y}_{B D I}=24.91-0.82 X_{\text {tsat }}-1.50 Z_{\text {male }}
$$

Additive Gender Effect

PREDICTION

Prediction Example

Let's fit the following model using the diabetes data:

$$
Y_{L D L}=\beta_{0}+\beta_{1} X_{B P}+\beta_{2} X_{\text {gluc }}+\beta_{3} X_{B M I}+\varepsilon
$$

Training this model on the first $N=400$ patients' data produces the following fitted model:

$$
\hat{Y}_{L D L}=22.135+0.089 X_{B P}+0.498 X_{\text {gluc }}+1.48 X_{B M I}
$$

Prediction Example

Let's fit the following model using the diabetes data:

$$
Y_{L D L}=\beta_{0}+\beta_{1} X_{B P}+\beta_{2} X_{\text {gluc }}+\beta_{3} X_{B M I}+\varepsilon
$$

Training this model on the first $N=400$ patients' data produces the following fitted model:

$$
\hat{Y}_{L D L}=22.135+0.089 X_{B P}+0.498 X_{\text {gluc }}+1.48 X_{B M I}
$$

Suppose a new patient presents with $B P=121$, gluc $=89$, and $B M I=$ 30.6. We can predict their $L D L$ score by:

$$
\begin{aligned}
\hat{Y}_{L D L} & =22.135+0.089(121)+0.498(89)+1.48(30.6) \\
& =122.463
\end{aligned}
$$

Interval Estimates Example

Two flavors of interval to quantify prediction uncertainty:

1. Confidence intervals
2. Prediction intervals

In our example, we get the following 95% interval estimates:

$$
\begin{aligned}
95 \% C I_{\hat{Y}} & =[115.6 ; 129.33] \\
95 \% P I & =[66.56 ; 178.37]
\end{aligned}
$$

- We can be 95% confident that the average $L D L$ of patients with Glucose $=89, B P=121$, and $B M I=3 \overline{0.6}$ will be somewhere between 115.6 and 129.33.
- We can be 95% confident that the LDL of a specific patient with Glucose $=89, B P=121$, and $B M I=30.6$ will be somewhere between 66.56 and 178.37.

MODEL FIT

Model Fit

We quantify the proportion of the outcome's variance that is explained by our model using the R^{2} statistic:

$$
R^{2}=\frac{T S S-R S S}{T S S}=1-\frac{R S S}{T S S}
$$

where

$$
\operatorname{TSS}=\sum_{n=1}^{N}\left(Y_{n}-\bar{Y}\right)^{2}=\operatorname{Var}(Y) \times(N-1)
$$

For the model we estimated in the above prediction example, we get:

$$
R^{2}=1-\frac{315383}{361704} \approx 0.13
$$

Model Fit for Prediction

We use the mean squared error (MSE) to assess predictive performance.

$$
\begin{aligned}
M S E & =\frac{1}{N} \sum_{n=1}^{N}\left(Y_{n}-\hat{Y}_{n}\right)^{2} \\
& =\frac{1}{N} \sum_{n=1}^{N}\left(Y_{n}-\hat{\beta}_{0}-\sum_{p=1}^{P} \hat{\beta}_{p} X_{n p}\right)^{2} \\
& =\frac{R S S}{N}
\end{aligned}
$$

For our example problem, we get:

$$
M S E=\frac{315383}{400} \approx 788.46
$$

Information Criteria

We can use information criteria to quickly compare non-nested (or nested) models while accounting for model complexity.

- Akaike's Information Criterion (AIC)

$$
A I C=2 K-2 \hat{\ell}(\theta \mid X)
$$

- Bayesian Information Criterion (BIC)

$$
B I C=K \ln (N)-2 \hat{\ell}(\theta \mid X)
$$

For our example, we get the following estimates of AIC and BIC:

$$
\begin{aligned}
\text { AIC } & =2(3)-2(-1901.59) \\
& =3813.18 \\
\text { BIC } & =3 \ln (400)-2(-1901.59) \\
& =3833.14
\end{aligned}
$$

LOGISTIC REGRESSION

Probabilities \& Odds

	Complete	
Sex	No	Yes
Female	95	147
Male	753	1540

$$
\begin{array}{rl}
P(C \mid M)=\frac{1540}{1540+753}=0.672 & O(C \mid M)=\frac{1540}{753}=2.045 \approx \frac{0.672}{1-0.672} \\
P(C \mid F)=\frac{147}{147+95}=0.607 & O(C \mid F)=\frac{147}{95}=1.547 \approx \frac{0.607}{1-0.607}
\end{array}
$$

The Generalized Linear Model

Every GLM is built from three components:

1. The systematic component, η.

- A linear function of the predictors, $\left\{X_{p}\right\}$.
- Describes the association between \mathbf{X} and Y.

2. The link function, $\boldsymbol{g}\left(\mu_{Y}\right)$.

- Transforms μ_{Y} so that it can take any value on the real line.

3. The random component, $P\left(Y \mid g^{-1}(\eta)\right)$

- The distribution of the observed Y.
- Quantifies the error variance around η.

The Logistic Regression Model

The logistic regression model can be represented as:

$$
\begin{aligned}
Y & \sim \operatorname{Bin}(\pi, 1) \\
\operatorname{logit}(\pi) & =\beta_{0}+\sum_{p=1}^{P} \beta_{p} X_{p}
\end{aligned}
$$

The fitted model can be represented as:

$$
\operatorname{logit}(\hat{\pi})=\hat{\beta}_{0}+\sum_{p=1}^{P} \hat{\beta}_{p} X_{p}
$$

To convert fitted values, $\hat{\eta}=\hat{\beta}_{0}+\sum_{p=1}^{P} \hat{\beta}_{p} X_{p}$, from a logit scale to a probability scale, we apply the logistic function:

$$
\operatorname{logistic}(\hat{\eta})=\frac{e^{\hat{\eta}}}{1+e^{\hat{\eta}}}
$$

Logistic Regression Example

```
## Coarsen the blood glucose variable:
diabetes %<>% mutate(highGlu = as.numeric(glu > 90))
## Estimate the model:
out1 <- glm(highGlu ~ age + bmi + bp, data = diabetes, family = binomial())
partSummary(out1, -c(1, 2))
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 610.42 on 441 degrees of freedom
Residual deviance: 538.18 on 438 degrees of freedom
AIC: 546.18
Number of Fisher Scoring iterations: 4
```


Assumptions

We can state the assumptions of logistic regression as follows:

1. The predictors are linearly related to $\operatorname{logit}(\pi)$.
2. The predictor matrix is full-rank.
3. The outcome is iid binomial with mean $\pi_{n}=\operatorname{logistic}\left(\eta_{n}\right)$.

Unlike linear regression, we don't need to assume

- Constant, finite error variance
- Normally distributed errors

For computational reasons, we also need the following:

- Large (enough) sample
- Relatively well-balance outcome
- No perfect prediction

CLASSIfiCATION

Classification Example

Say we want to classify a new patient into either the "high glucose" group or the "not high glucose" group using the model fit above.

- Assume this patient has the following characteristics:
- They are 57 years old
- Their BMI is 28
- Their average blood pressure is 92

First we plug their predictor data into the fitted model to get their model-implied η :

$$
\begin{aligned}
\hat{\eta} & =-6.479+0.035 \times 57+0.107 \times 28+0.023 \times 92 \\
& =0.572
\end{aligned}
$$

Classification Example

Next we convert the predicted η value into a model-implied success probability by applying the logistic function:

$$
\hat{\pi}=\operatorname{logistic}(0.572)=\frac{e^{0.572}}{1+e^{0.572}}=0.639
$$

Finally, to make the classification, assume a threshold of $\hat{\pi}=0.5$ as the decision boundary.

- Because $0.639>0.5$ we would classify this patient into the "high glucose" group.

Confusion Matrix

	Predicted	
True	Low	High
Low	123	82
High	62	175

Confusion Matrix of Blood Glucose Level

$$
\begin{array}{ll}
\text { Sensitivity }=\frac{175}{175+62} & =0.738 \\
\text { Specificity }=\frac{123}{123+82} & =0.6 \\
\text { Accuracy }=\frac{175+123}{175+123+62+82} & =0.674
\end{array}
$$

ROC Curve

