### **Course Summary** Fundamental Techniques in Data Science



Kyle M. Lang

Department of Methodology & Statistics Utrecht University

## Outline

Exam Information

**R** Topics

Linear Regression Assumptions

Moderation

Prediction Interval Estimates for Prediction

Model Fit

### Logistic Regression

Probabilities & Odds Assumptions

### Classification

**Evaluating Classification Performance** 



### **Exam Information**

### Dates

- Exam: Wednesday 22 January
- Resit: Wednesday 12 February

### Structure

- Approximately 25 questions
- Mixture of multiple-choice and short-answer questions
- Closed-book
- Remindo, computer-based exam



# **R** TOPICS



4 of 41

## **R** Fundamentals

Objects and assignment

| 1:3       |     |     |   |  |
|-----------|-----|-----|---|--|
| [1]       | 1   | 2   | 3 |  |
| x <-<br>x | - : | 1:3 | 3 |  |
| [1]       | 1   | 2   | 3 |  |
| x +       | 4   |     |   |  |
| [1]       | 5   | 6   | 7 |  |

#### Data types

- Vectors, Matrices
- Lists, Data frames
- Factors





### **R** Fundamentals

User-defined functions

```
helloWorld <- function() cat("Hello World!")
helloWorld()</pre>
```

Hello World!

```
add <- function(x, y) x + y add(2, 3)
```

[1] 5

add(add(1, 2), 3)

[1] 6

## **Tidyverse Fundamentals**

#### Working with pipes

```
library(magrittr)
```

```
iris %$% table(Species)
```

```
Species
setosa versicolor virginica
50 50 50
add(1, 2) %>% add(3)
[1] 6
```

## **Tidyverse Fundamentals**

### Working with **dplyr** and **ggplot**

```
library(dplyr)
library(ggplot2)
iris %>%
  filter(Species != "virginica") %>%
  mutate(petal_ratio = Petal.Length / Petal.Width) %>%
  ggplot(aes(Species, petal_ratio)) +
  geom_boxplot() +
  ylab("Petal Length to Width Ratio")
```

## **Tidyverse Fundamentals**



### Manipulating Model Objects

fit1 <- lm(Petal.Length ~ Sepal.Length + Species, data = iris)
fit2 <- lm(Petal.Length ~ Sepal.Length\*Species, data = iris)</pre>

coef(fit1)

| (Intercept) | Sepal.Length | Speciesversicolor | Speciesvirginica |
|-------------|--------------|-------------------|------------------|
| -1.7023422  | 0.6321099    | 2.2101378         | 3.0900021        |

summary(fit2)\$fstatistic

| value    | numdf | dendf   |
|----------|-------|---------|
| 1333.265 | 5.000 | 144.000 |

### Manipulating Model Objects

```
anova(fit2, fit1)
Analysis of Variance Table
Model 1: Petal.Length ~ Sepal.Length * Species
Model 2: Petal.Length ~ Sepal.Length + Species
Res.Df RSS Df Sum of Sq F Pr(>F)
1 144 9.8179
2 146 11.6571 -2 -1.8393 13.489 4.272e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

### Manipulating Model Objects

fit1 %>% rstudent() %>% plot()



Index



# LINEAR REGRESSION



13 of 41

### Simple Linear Regression

In linear regression, we want to find the best fit line:

$$\hat{\mathbf{Y}} = \hat{\beta}_0 + \hat{\beta}_1 X$$

• For any  $X_n$ , the corresponding  $\hat{Y}_n$  represents the model-implied, conditional mean of Y.



### Simple Linear Regression

In linear regression, we want to find the best fit line:

$$\hat{\mathbf{Y}} = \hat{\beta}_0 + \hat{\beta}_1 X$$

• For any  $X_n$ , the corresponding  $\hat{Y}_n$  represents the model-implied, conditional mean of Y.

After accounting for the estimation error, we get the full regression equation:

$$Y = \hat{\beta}_0 + \hat{\beta}_1 X + \hat{\varepsilon}$$



### Residuals as the Basis of Estimation

We use the residuals,  $\hat{\varepsilon}_n$ , to estimate the model.

$$RSS = \sum_{n=1}^{N} \hat{\varepsilon}_n^2 = \sum_{n=1}^{N} \left( Y_n - \hat{Y}_n \right)^2$$
$$= \sum_{n=1}^{N} \left( Y_n - \hat{\beta}_0 - \hat{\beta}_1 X_n \right)^2$$



### Assumptions

- 1. The model is linear in the parameters.
  - Otherwise: We are not working with linear regression.
- 2. The predictor matrix is *full rank*.
  - Otherwise: The model is not estimable.
- 3. The predictors are strictly exogenous.
  - Otherwise: The estimated regression coefficients will be biased.
- 4. The errors have constant, finite variance.
  - Otherwise: Standard errors will be biased.
- 5. The errors are uncorrelated.
  - Otherwise: Standard errors will be biased.
- 6. The errors are normally distributed.
  - Otherwise: Small-sample inferences and some estimates are not justified.

# **MODERATION**



17 of 41

## **Moderated Regression**

The effect of *X* on *Y* varies **as a function** of *Z*.



### Interpretation

Given the following equation:

$$Y = \hat{\beta}_0 + \hat{\beta}_1 X + \hat{\beta}_2 Z + \hat{\beta}_3 X Z + \hat{\varepsilon}$$

*β*<sub>3</sub> quantifies the effect of Z on the focal effect (the X → Y effect).

 For a unit change in Z, *β*<sub>3</sub> is the expected change in the effect of X on Y.

### • $\hat{\beta}_1$ and $\hat{\beta}_2$ are conditional effects.

- Interpreted where the other predictor is zero.
- For a unit change in X,  $\hat{\beta}_1$  is the expected change in Y, when Z = 0.
- For a unit change in Z,  $\hat{\beta}_2$  is the expected change in Y, when X = 0.

### **Continuous Moderators**

Residual standard error: 12.54 on 438 degrees of freedom Multiple R-squared: 0.1834, Adjusted R-squared: 0.1778 F-statistic: 32.78 on 3 and 438 DF, p-value: < 2.2e-16

## Visualizing the Interaction

We can get a better idea of the patterns of moderation by plotting the focal effect at conditional values of the moderator.



### **Categorical Moderators**

```
## Load data:
socSup <- readRDS("../data/social_support.rds")
## Estimate the moderated regression model:
```

```
out4 <- lm(bdi ~ tanSat * sex, data = socSup)
partSummary(out4, -c(1, 2))</pre>
```

Coefficients:

|                | Estimate | Std. Error | t value | Pr(> t ) |
|----------------|----------|------------|---------|----------|
| (Intercept)    | 20.8478  | 6.2114     | 3.356   | 0.00115  |
| tanSat         | -0.5772  | 0.3614     | -1.597  | 0.11372  |
| sexmale        | 14.3667  | 12.2054    | 1.177   | 0.24223  |
| tanSat:sexmale | -0.9482  | 0.7177     | -1.321  | 0.18978  |

Residual standard error: 9.267 on 91 degrees of freedom Multiple R-squared: 0.08955, Adjusted R-squared: 0.05954 F-statistic: 2.984 on 3 and 91 DF, p-value: 0.03537

### Visualizing Categorical Moderation

$$\hat{Y}_{BDI} = 20.85 - 0.58X_{tsat} + 14.37Z_{male} - 0.95X_{tsat}Z_{male}$$

$$\hat{Y}_{BDI} = 24.91 - 0.82X_{tsat} - 1.50Z_{male}$$



Tangible Satisfaction

# PREDICTION



24 of 41

### **Prediction Example**

Let's fit the following model using the *diabetes* data:

$$Y_{LDL} = \beta_0 + \beta_1 X_{BP} + \beta_2 X_{gluc} + \beta_3 X_{BMI} + \varepsilon$$

Training this model on the first N = 400 patients' data produces the following fitted model:

$$\hat{Y}_{LDL} = 22.135 + 0.089 X_{BP} + 0.498 X_{gluc} + 1.48 X_{BM}$$



Let's fit the following model using the *diabetes* data:

$$Y_{LDL} = \beta_0 + \beta_1 X_{BP} + \beta_2 X_{gluc} + \beta_3 X_{BMI} + \varepsilon$$

Training this model on the first N = 400 patients' data produces the following fitted model:

$$\hat{Y}_{LDL} = 22.135 + 0.089 X_{BP} + 0.498 X_{qluc} + 1.48 X_{BMI}$$

Suppose a new patient presents with BP = 121, gluc = 89, and BMI = 30.6. We can predict their *LDL* score by:

$$\begin{split} \hat{Y}_{LDL} &= 22.135 + 0.089(121) + 0.498(89) + 1.48(30.6) \\ &= 122.463 \end{split}$$

### Interval Estimates Example

Two flavors of interval to quantify prediction uncertainty:

- 1. Confidence intervals
- 2. Prediction intervals

In our example, we get the following 95% interval estimates:

95%  $CI_{\hat{v}} = [115.6; 129.33]$ 

95% *PI* = [66.56;178.37]

- We can be 95% confident that the <u>average LDL</u> of patients with *Glucose* = 89, *BP* = 121, and *BMI* = 30.6 will be somewhere between 115.6 and 129.33.
- We can be 95% confident that the <u>LDL</u> of a specific patient with Glucose = 89, BP = 121, and BMI = 30.6 will be somewhere between 66.56 and 178.37.

# MODEL FIT



27 of 41

### Model Fit

We quantify the proportion of the outcome's variance that is explained by our model using the  $R^2$  statistic:

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

where

$$TSS = \sum_{n=1}^{N} \left( Y_n - \bar{Y} \right)^2 = \text{Var}(Y) \times (N-1)$$

For the model we estimated in the above prediction example, we get:

$$R^2 = 1 - \frac{315383}{361704} \approx 0.13$$

28 of 41

### Model Fit for Prediction

We use the *mean squared error* (MSE) to assess predictive performance.

$$MSE = \frac{1}{N} \sum_{n=1}^{N} \left( Y_n - \hat{Y}_n \right)^2$$
$$= \frac{1}{N} \sum_{n=1}^{N} \left( Y_n - \hat{\beta}_0 - \sum_{p=1}^{P} \hat{\beta}_p X_{np} \right)^2$$
$$= \frac{RSS}{N}$$

For our example problem, we get:

$$MSE = \frac{315383}{400} \approx 788.46$$



## Information Criteria

We can use *information criteria* to quickly compare *non-nested* (or nested) models while accounting for model complexity.

• Akaike's Information Criterion (AIC)

 $AIC = \frac{2K}{2} - 2\hat{\ell}(\theta|X)$ 

• Bayesian Information Criterion (BIC)

 $BIC = K \ln(N) - 2\hat{\ell}(\theta|X)$ 

For our example, we get the following estimates of AIC and BIC:

AIC = 2(3) - 2(-1901.59)= 3813.18  $BIC = 3 \ln(400) - 2(-1901.59)$ = 3833.14



# LOGISTIC REGRESSION



31 of 41

## Probabilities & Odds

|        | Complete |      |  |
|--------|----------|------|--|
| Sex    | No       | Yes  |  |
| Female | 95       | 147  |  |
| Male   | 753      | 1540 |  |

$$P(C|M) = \frac{1540}{1540 + 753} = 0.672 \qquad O(C|M) = \frac{1540}{753} = 2.045 \approx \frac{0.672}{1 - 0.672}$$
$$P(C|F) = \frac{147}{147 + 95} = 0.607 \qquad O(C|F) = \frac{147}{95} = 1.547 \approx \frac{0.607}{1 - 0.607}$$

## The Generalized Linear Model

Every GLM is built from three components:

- 1. The systematic component,  $\eta$ .
  - A linear function of the predictors,  $\{X_p\}$ .
  - Describes the association between **X** and **Y**.
- 2. The link function,  $g(\mu_{\rm Y})$ .
  - Transforms  $\mu_Y$  so that it can take any value on the real line.
- **3**. The random component,  $P(Y|g^{-1}(\eta))$ 
  - The distribution of the observed Y.
  - Quantifies the error variance around  $\eta$ .



### The Logistic Regression Model

The logistic regression model can be represented as:

$$Y \sim \operatorname{Bin}(\pi, 1)$$
$$\operatorname{logit}(\pi) = \beta_0 + \sum_{p=1}^{p} \beta_p X_p$$

The fitted model can be represented as:

$$\operatorname{logit}(\hat{\pi}) = \hat{\beta}_0 + \sum_{p=1}^{p} \hat{\beta}_p X_p$$

To convert fitted values,  $\hat{\eta} = \hat{\beta}_0 + \sum_{p=1}^p \hat{\beta}_p X_p$ , from a logit scale to a probability scale, we apply the *logistic* function:

$$\text{logistic}(\hat{\eta}) = \frac{e^{\hat{\eta}}}{1 + e^{\hat{\eta}}}$$

### Logistic Regression Example

```
## Coarsen the blood glucose variable:
diabetes %<>% mutate(highGlu = as.numeric(glu > 90))
## Estimate the model:
out1 <- glm(highGlu ~ age + bmi + bp, data = diabetes, family = binomial())
partSummary(out1, -c(1, 2))
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 610.42 on 441 degrees of freedom
Residual deviance: 538.18 on 438 degrees of freedom
AIC: 546.18
Number of Fisher Scoring iterations: 4
```

### Assumptions

We can state the assumptions of logistic regression as follows:

- 1. The predictors are linearly related to  $logit(\pi)$ .
- 2. The predictor matrix is full-rank.
- **3**. The outcome is iid binomial with mean  $\pi_n = \text{logistic}(\eta_n)$ .

Unlike linear regression, we don't need to assume

- Constant, finite error variance
- Normally distributed errors

For computational reasons, we also need the following:

- Large (enough) sample
- Relatively well-balance outcome
- No perfect prediction



# **CLASSIFICATION**



37 of 41

## **Classification Example**

Say we want to classify a new patient into either the "high glucose" group or the "not high glucose" group using the model fit above.

- Assume this patient has the following characteristics:
  - They are 57 years old
  - Their BMI is 28
  - Their average blood pressure is 92

First we plug their predictor data into the fitted model to get their model-implied  $\eta$ :

 $\hat{\eta} = -6.479 + 0.035 \times 57 + 0.107 \times 28 + 0.023 \times 92$ = 0.572

### **Classification Example**

Next we convert the predicted  $\eta$  value into a model-implied success probability by applying the logistic function:

$$\hat{\pi} = \text{logistic}(0.572) = \frac{e^{0.572}}{1 + e^{0.572}} = 0.639$$

Finally, to make the classification, assume a threshold of  $\hat{\pi} = 0.5$  as the decision boundary.

 Because 0.639 > 0.5 we would classify this patient into the "high glucose" group.

### **Confusion Matrix**

|      | Predicted |      |  |
|------|-----------|------|--|
| True | Low       | High |  |
| Low  | 123       | 82   |  |
| High | 62        | 175  |  |

Confusion Matrix of Blood Glucose Level

Sensitivity = 
$$\frac{175}{175 + 62}$$
 = 0.738  
Specificity =  $\frac{123}{123 + 82}$  = 0.6  
Accuracy =  $\frac{175 + 123}{175 + 123 + 62 + 82}$  = 0.674

## **ROC Curve**

