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Recap: Model Definition
We define the logistic regression model as:

Y ∼ Bin(𝜋, 1)

logit(𝜋) = 𝛽0 +
P∑︁
p=1

𝛽pXp

We denote the untransformed linear predictor as 𝜂:

𝜂 = 𝛽0 +
P∑︁
p=1

𝛽pXp

The logit link represents the natural log of the odds of success:

logit(𝜋) = ln
( 𝜋

1 − 𝜋

)
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Recap: Inverse Link Function

In logistic regression, the inverse link function, g−1 (·), is the logistic
function:

logistic(X) = eX
1 + eX

So, we convert 𝜂 to 𝜋 by:

𝜋 =
e𝜂

1 + e𝜂 =

exp
(
𝛽0 +∑P

p=1 𝛽pXp
)

1 + exp
(
𝛽0 +∑P

p=1 𝛽pXp
)
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Assumptions & Diagnostics
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Assumptions of Logistic Regression

The first two assumptions of logistic regression are shared with linear
regression.

1. The model is linear in the parameters.
◦ This is OK: logit(𝜋) = 𝛽0 + 𝛽1X + 𝛽2Z + 𝛽3XZ + 𝛽4X2 + 𝛽5X3

◦ This is not: logit(𝜋) = 𝛽0X𝛽1

2. The predictor matrix is full rank.
◦ N > P
◦ No Xp can be a linear combination of other predictors.
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Assumptions of Logistic Regression

The distributional assumptions of logistic regression are not framed in
terms of residuals.

• Linear regression

Y ∼ N
(
Ŷ, 𝜎2

)
Y = Ŷ + 𝜀

𝜀 ∼ N
(
0, 𝜎2)

• Logistic regression

Y ∼ Bin
(
𝜋, 1

)
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Assumptions of Logistic Regression

The variance of the binomial distribution is a function of its mean.

• Linear regression

Ȳ = Ŷ, var(Y) = 𝜎2

• Logistic regression

Ȳ = 𝜋, var(Y) = 𝜋
(
1 − 𝜋

)
So, we consider the entire outcome distribution in logistic regression.

• We can succinctly summarize the distributional assumptions of
logistic regression as:

Yi
iid∼ Bin

(
𝜋i, 1

)
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Assumptions of Logistic Regression

We end up with three assumptions where the third assumption fills the
role played by all residual-related assumptions in linear regression.

1. The model is linear in the parameters.

2. The predictor matrix is full rank.

3. The outcome is independently and identically binomially distributed.

Yn iid∼ Bin
(
𝜋n, 1

)
𝜋n = logistic ©­«𝛽0 +

P∑︁
p=1

𝛽pXnpª®¬
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Example

To demonstrate these ideas, we’ll fit a logistic regression model that
predicts the chances of Titanic passengers surviving based on their age,
sex, and ticket price

## Read the data:

titanic <- readRDS(paste0(dataDir, "titanic.rds"))

## Estimate the logistic regression model:

glmFit <- glm(survived ~ age + sex + fare,

data = titanic,

family = "binomial")

## Save the linear predictor estimates:

titanic$etaHat <- predict(glmFit, type = "link")

10 of 43



Example

partSummary(glmFit, -1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.837621 0.215121 3.894 9.87e-05

age -0.007404 0.006040 -1.226 0.22

sexmale -2.392422 0.171288 -13.967 < 2e-16

fare 0.011586 0.002338 4.955 7.23e-07

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1182.8 on 886 degrees of freedom

Residual deviance: 881.4 on 883 degrees of freedom

AIC: 889.4

Number of Fisher Scoring iterations: 5
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Raw Residuals

In logistic regression the outcome is binary, Y ∈ {0, 1}, but the
parameter that we’re trying to model is continuous, 𝜋 ∈ (0, 1).
• Due to this mismatch in measurement levels, we don’t have a natural

definition of a ”residual” in logistic regression.

• We have a few potential operationalizations.

The most basic residual is the raw residual, en.

• The difference between the observed outcome value and the
predicted probability.

en = Yn − 𝜋n
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Raw Residuals

library(ggplot)

## Calculate the raw residuals:

titanic$e <-

resid(glmFit, type = "response")

## Plot raw residuals vs. fitted

## linear predictor values:

ggplot(titanic, aes(etaHat, e)) +

geom_point() +

geom_smooth() +

theme_classic() +

xlab("Linear Predictor") +

ylab("Raw Residual") −1.0
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Pearson Residuals

Pearson residuals, rn, are scaled raw
residuals.

rn =
en√︁

𝜋n (1 − 𝜋n)

## Calculate the Pearson residuals:

titanic$r <-

resid(glmFit, type = "pearson")
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Deviance Residuals

Deviance residuals, dn, are derived directly from the objective function
used to estimate the model.

dn = sign(en)
√︃
−2

[
Yn ln

(
𝜋n

)
+ (1 − Yn) ln

(
1 − 𝜋n

) ]
The residual deviance, D, is the sum of squared deviance residuals.

D =

N∑︁
n=1
d2
n

15 of 43



Deviance Residuals

## Calculate the deviance residuals:

titanic$d <-

resid(glmFit, type = "deviance")

## Calculate the residual deviance:

titanic$d^2 %>% sum()

[1] 881.4048

summary(glmFit)$deviance

[1] 881.4048 −2
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Residual Deviance

The residual deviance quantifies how well the model fits the data.

## Estimate a null model:

nullFit <- glm(survived ~ 1, family = binomial, data = titanic)

## Test the fit of our example model:

anova(nullFit, glmFit, test = "Chisq")

Analysis of Deviance Table

Model 1: survived ~ 1

Model 2: survived ~ age + sex + fare

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 886 1182.8

2 883 881.4 3 301.37 < 2.2e-16 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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A1: Linearity

Assumption 1 implies a linear
relation between continuous
predictors and the logit of the
success probability.

• We can basically evaluate the
linearity assumption using the
same methods we applied with
linear regression.

• Ŷ → 𝜂 = logit
(
𝜋
)

plot(glmFit, 1)
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A1: Linearity
car::crPlots(glmFit, terms = ~ age + fare)
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A2: Predictor Matrix Rank

Assumption 2 implies two conditions:

1. P < N
2. No severe (multi)collinearity among the predictors

We can quantify multicollinearity with the variance inflation factor (VIF).

car::vif(glmFit)

age sex fare

1.031829 1.007699 1.026373

VIF > 10 indicates severe multicollinearity.
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A3: IID Binomial
Assumption 3 implies several conditions.

1. The outcome, Y , is binary.

2. The linear predictor, 𝜂, can explain all the systematic trends in 𝜋 .
◦ No residual clustering after accounting for X.
◦ No important variables omitted from X.

We can easily check the first condition with summary statistics.

levels(titanic$survived)

[1] "no" "yes"

table(titanic$survived)

no yes

545 342
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Alternative Modeling Schemes

If we have a non-binary, categorical outcome, we can use a different type
of model.
• Multiclass nominal variables: Multinomial logistic regression

◦ nnet::multinom()

• Ordinal variables: Proportional odds logistic regression
◦ MASS::polr()

• Counts: Poisson regression
◦ glm() with family = 'poisson'

The binomial distribution (and logistic regression) is also appropriate for
modeling the proportion of successes in N trials.
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A3: Clustering

We can check for residual clustering by calculating the ICC using
deviance residuals.

## Check for residual dependence induced by 'class':

ICC::ICCbare(x = titanic$class, y = resid(glmFit, type = "deviance"))

[1] 0.1054665
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Computational Considerations

In addition to the preceding statistical assumptions, we must satisfy
three computational requirements that were not necessary in linear
regression.

1. The sample size is large enough to support the necessary numerical
estimation.

2. The outcome classes are sufficiently balanced.

3. There is no perfect prediction.
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Sufficient Sample Size

Logistic regression models are estimated with numerical methods, so we
need larger samples than we would for linear regression models.

• The sample size requirements increase with model complexity.

Some suggested rules of thumb:

• 10 cases for each predictor (Agresti, 2018)
• N = 10P/𝜋0 (Peduzzi, Concato, Kemper, Holford, & Feinstein, 1996)

◦ P: Number of predictors
◦ 𝜋0: Proportion of the minority class

• N = 100 + 50P (Bujang, Omar, & Baharum, 2018)
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Balanced Outcomes

The logistic regression may not perform well when the outcome classes
are severely imbalanced.

with(titanic, table(survived) / length(survived))

survived

no yes

0.6144307 0.3855693

We have a few possible solutions for problematic imbalance:

• Down-sampling the majority class

• Up-sampling the minority class
• Use weights when estimating the logistic regression model

◦ weights argument in glm()
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Perfect Prediction

We don’t actually want to perfectly
predict class membership.

• The model cannot estimate with
perfectly separable classes.

Model regularization (e.g., ridge or
LASSO penalty) may help.

• glmnet::glmnet()
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Influential Cases

As with linear regression, we need to deal with any overly influential
cases.

• We can use the linear predictor values to calculate Cook’s Distances.

• Any cases that exerts undue influence on the linear predictor will
have the same effect of the predicted success probabilities.
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Influential Cases

cooks.distance(glmFit) %>% plot()
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Classification Performance
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Confusion Matrix

One of the most direct ways to evaluate classification performance is the
confusion matrix.

## Add predictions to the dataset:

titanic %<>%

mutate(piHat = predict(glmFit, type = "response"),

yHat = as.factor(ifelse(piHat <= 0.5, "no", "yes"))

)

True
Predicted no yes

no 458 106
yes 87 236

Confusion Matrix of Predicted Survival
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Confusion Matrix

Each cell in the confusion matrix represents a certain classification result.

True
Predicted Died Survived

Died True Negative False Negative
Survived False Positive True Positive

Confusion Matrix of Predicted Survival

• TP: Correctly predict survival
• TN: Correctly predict death
• FP: Predict survival for dead people
• FN: Predict death for survivors
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Confusion Matrix

library(caret)

cMat <- titanic %$% confusionMatrix(data = yHat, reference = survived)

cMat$table

Reference

Prediction no yes

no 458 106

yes 87 236

cMat$overall

Accuracy Kappa AccuracyLower AccuracyUpper

7.824126e-01 5.359709e-01 7.537802e-01 8.091549e-01

AccuracyNull AccuracyPValue McnemarPValue

6.144307e-01 7.471405e-27 1.950898e-01
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Confusion Matrix

cMat$byClass

Sensitivity Specificity

0.8403670 0.6900585

Pos Pred Value Neg Pred Value

0.8120567 0.7306502

Precision Recall

0.8120567 0.8403670

F1 Prevalence

0.8259693 0.6144307

Detection Rate Detection Prevalence

0.5163472 0.6358512

Balanced Accuracy

0.7652127
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Summaries of the Confusion Matrix
Accuracy = (TP + TN) / (P + N)
• In our example, Accuracy = 0.78
• 78% are correctly classified

Error Rate = (FP + FN) / (P + N) = 1 - Accuracy
• In our example, Error Rate = 0.22
• 22% are incorrectly classified

Sensitivity = TP / (TP + FN)
• In our example, Sensitivity = 0.84
• 84% of survivors are correctly classified

Specificity = TN / (TN + FP)
• In our example, Specificity = 0.69
• 69% of deaths are correctly classified
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Summaries of the Confusion Matrix

False Positive Rate (FPR) = FP / (TN + FP) = 1 - Specificity
• In our example, FPR = 0.31
• 31% of deaths are incorrectly classified as survivors

Positive Predictive Value (PPV) = TP / (TP + FP)
• In our example, PPV = 0.81
• There is an 81% chance that a passenger classified as a survivor was

classified correctly

Negative Predictive Value (NPV) = TN / (TN + FN)
• In our example, NPV = 0.73
• There is a 73% chance that a passenger classified as dying was

classified correctly
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ROC Curve

A receiver operating characteristic
(ROC) curve illustrates the
diagnostic ability of a binary
classifier for all possible values of
the classification threshold.

• The ROC curve plots sensitivity
against specificity at different
threshold values.

rocData <- titanic %$%

pROC::roc(survived, piHat)

plot(rocData)
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ROC Curve

The area under the ROC curve (AUC) is a one-number summary of the
potential performance of the classifier.

• The AUC does not depend on the classification threshold.

pROC::auc(rocData)

Area under the curve: 0.8298

According to Mandrekar (2010):
• AUC value from 0.7 – 0.8: Acceptable
• AUC value from 0.8 – 0.9: Excellent
• AUC value over 0.9: Outstanding
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Threshold Selection

We can use numerical methods to estimate an optimal threshold value.

library(OptimalCutpoints)

ocOut <- optimal.cutpoints(X = "piHat",

status = "survived",

tag.healthy = "no",

data = titanic,

method = "ROC01"

)
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Threshold Selection

partSummary(ocOut, -1)

Area under the ROC curve (AUC): 0.83 (0.802, 0.858)

CRITERION: ROC01

Number of optimal cutoffs: 1

Estimate

cutoff 0.2360978

Se 0.7543860

Sp 0.7761468

PPV 0.6789474

NPV 0.8343195

DLR.Positive 3.3700029

DLR.Negative 0.3164531

FP 122.0000000

FN 84.0000000

Optimal criterion 0.1104365
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Alternative Performance Measures

Measuring classification performance from a confusion matrix can be
problematic.

• Sometimes too coarse.

We can also base our error measure on the residual deviance with the
Cross-Entropy Error:

CEE = −N−1
N∑︁
n=1
Yn ln(𝜋n) + (1 − Yn) ln(1 − 𝜋n)

• The CEE is sensitive to classification confidence.
• Stronger predictions are more heavily weighted.
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Benefits of CEE

The misclassification rate is a näıvely appealing option.
• The proportion of cases assigned to the wrong group

Consider two perfect classifiers:
1. P(Ŷn = 1|Yn = 1) = 0.90, P(Ŷn = 1|Yn = 0) = 0.10, n = 1, 2, . . . ,N
2. P(Ŷn = 1|Yn = 1) = 0.55, P(Ŷn = 1|Yn = 0) = 0.45, n = 1, 2, . . . ,N

Both of these classifiers will have the same misclassification rate.
• Neither model ever makes an incorrect group assignment.

The first model will have a lower CEE.
• The classifications are made with higher confidence.
• CEE1 = 0.105, CEE2 = 0.598
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