Generalized Linear Model & Logistic Regression

Fundamental Techniques in Data Science

Kyle M. Lang

Department of Methodology & Statistics Utrecht University

Outline

Generalized Linear Model

Logistic Regression

Classification

General Linear Model

So far, we've been discussing models with this form:

$$Y = \beta_0 + \sum_{p=1}^{p} \beta_p X_p + \varepsilon$$

This type of model is known as the general linear model.

- All flavors of linear regression are general linear models.
 - SLR, MLR
 - t-test, ANOVA, ANCOVA
 - Multilevel linear regression models

Components of the General Linear Model

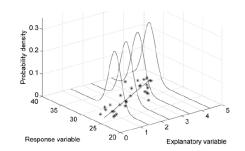
We can break our model into pieces:

$$\eta = \beta_0 + \sum_{p=1}^P \beta_p X_p$$

$$Y = \eta + \varepsilon$$

 $\varepsilon \sim N(0, \sigma^2)$, so we can also write:

$$Y \sim N(\eta, \sigma^2)$$



Where:

- η is the *systematic component* of the model (AKA, the *linear predictor*).
- The normal distribution, $N(\cdot, \cdot)$, is the model's random component.

Components of the General Linear Model

The purpose of general linear modeling (i.e., regression modeling) is to build a model of the outcome's mean, μ_V .

- In this case, $\mu_Y = \eta$.
- The systematic component defines the mean of Y.

The random component quantifies variability around μ_Y (i.e., error variance).

 In the general linear model, we assume that this error variance follows a normal distribution.

GENERALIZED LINEAR MODEL

Extending the General Linear Model

We can generalize the models we've been using in two important ways:

- 1. Allow for random components other than the normal distribution.
- 2. Allow for more complicated relations between $\mu_{\rm Y}$ and η .
 - Allow: $g(\mu_Y) = \eta$

These extensions lead to the class of generalized linear models (GLMs).

Components of the Generalized Linear Model

The random component in a GLM can be any distribution from the so-called *exponential family*.

- The exponential family contains many popular distributions:
 - Normal
 - Binomial
 - Poisson
 - Many others...

The systematic component of a GLM is exactly the same as it is in general linear models:

$$\eta = \beta_0 + \sum_{p=1}^P \beta_p X_p$$

Link Functions

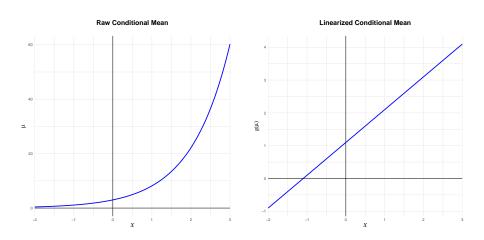
In GLMs, η does not directly describe μ_Y .

- We first transform μ_Y via a *link function*.
- $g(\mu_{\rm Y}) = \eta$

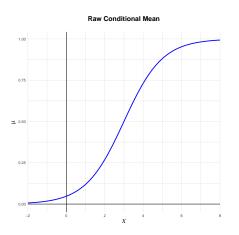
The link function performs two important functions.

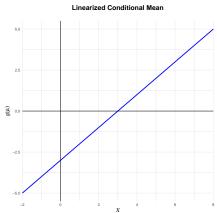
- 1. Linearize the association between **X** and **Y**.
 - Nonlinear: $\mathbf{X} \to \mu_{\mathbf{Y}}$
 - Linear: $\mathbf{X} \to g(\mu_{\mathbf{Y}})$
- 2. Allows GLMs for outcomes with restricted ranges without requiring any restrictions on the range of the $\{X_p\}$.
 - In many cases, μ_Y has a limited range.
 - Counts: $\mu_{\rm Y} > 0$
 - Probabilities: $\mu_Y \in [0,1]$
 - ullet When correctly specified, $g(\mu_{
 m Y})$ can take any value on the real line.

Visualizing Link Functions



Visualizing Link Functions





Components of the Generalized Linear Model

Every GLM is built from three components:

- 1. The systematic component, η .
 - A linear function of the predictors, $\{X_p\}$.
 - Describes the association between X and Y.
- 2. The link function, $g(\mu_Y)$.
 - Linearizes the relation between **X** and **Y**.
 - Transforms μ_{Y} so that it can take any value on the real line.
- 3. The random component, $P(Y|g^{-1}(\eta))$
 - The distribution of the observed Y.
 - \circ Quantifies the error variance around η .

General Linear Model as a Special Case

The general linear model is a special case of GLM.

1. Systematic component:

$$\eta = \beta_0 + \sum_{p=1}^P \beta_p X_p$$

2. Link function:

$$\mu_{Y} = \eta$$

3. Random component:

$$Y \sim N(\eta, \sigma^2)$$


```
partSummary(lmFit, 2)
## Residuals:
##
       Min
                 10
                      Median
                                  30
                                          Max
## -1.02977 -0.22241 -0.01514 0.18180 1.17449
partSummary(glmFit, 2)
## Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
##
   (Intercept)
                    1.21140
                               0.06524 18.568 < 2e-16
## Petal.Width
                  1.01871
                               0.15224 6.691 4.41e-10
## Speciesversicolor 1.69779 0.18095 9.383 < 2e-16
## Speciesvirginica
                     2.27669
                               0.28132
                                         8.093 2.08e-13
```

LOGISTIC REGRESSION

Logistic Regression

So why do we care about the GLM when linear regression models have worked thus far?

• In a word: Classification.

In the classification task, we have a discrete, qualitative outcome.

- We will begin with the situation of two-level outcomes.
 - Alive or Dead
 - Pass or Fail
 - Pay or Default

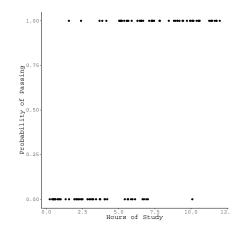
We want to build a model that predicts class membership based on some set of interesting features.

To do so, we will use a very useful type of GLM: logistic regression.

Classification Example

Suppose we want to know the effect of study time on the probability of passing an exam.

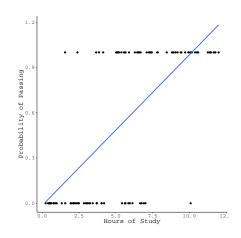
- The probability of passing must be between 0 and 1.
- We care about the probability of passing, but we only observe absolute success or failure.
 - $Y \in \{1, 0\}$



Linear Regression for Binary Outcomes?

What happens if we try to model these data with linear regression?

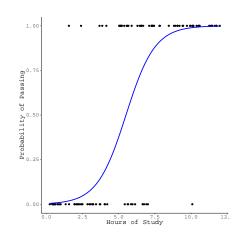
Hmm...notice any problems?



Logistic Regression Visualized

We get a much better model using logistic regression.

- The link function ensures legal predicted values.
- The sigmoidal curve implies fluctuation in the effectiveness of extra study time.
 - More study time is most beneficial for students with around 5.5 hours of study.



Probabilities, Odds, & Odds-Ratios

In 2017, 2535 people participated in the *Ultra-Trail du Mont-Blanc*, but only 66.55% finished the race.

• Below, you can find a cross-tabulation of finishing status and sex.

	Finish	
Sex	No	Yes
Female	95	147
Male	753	1540

- What is the probability of finishing for each sex?
- What are the odds of finishing for each sex?
- What is the odds ratio of finishing for males vs. females?

Defining the Logistic Regression Model

In logistic regression problems, we are modeling binary data:

• Usual coding: $Y \in \{1 = \text{``Success''}, 0 = \text{``Failure''}\}.$

The Binomial distribution is a good way to represent this kind of data.

 The systematic component in our logistic regression model will be the binomial distribution.

The mean of the binomial distribution (with N=1) is the "success" probability, $\pi=P(Y=1)$.

• We are interested in modeling $\mu_Y = \pi$:

$$g(\pi) = \beta_0 + \sum_{p=1}^p \beta_p X_p$$

Link Function for Logistic Regression

Because π is bounded by 0 and 1 and not linear related to **X**, we cannot model it directly—we must apply an appropriate link function.

- · Logistic regression uses the logit link.
- Given π , we can define the *odds* of success as:

$$O_{S} = \frac{\pi}{1-\pi}$$

- Because $\pi \in [0,1]$, we know that $O_s \ge 0$.
- We take the natural log of the odds as the last step to fully map π to the real line.

$$logit(\pi) = ln\left(\frac{\pi}{1-\pi}\right)$$

Fully Specified Logistic Regression Model

Our final logistic regression model is:

$$Y \sim Bin(\pi, 1)$$

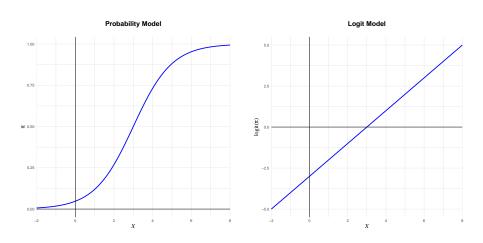
$$logit(\pi) = \beta_0 + \sum_{p=1}^{p} \beta_p X_p$$

The fitted model can be represented as:

$$\operatorname{logit}(\hat{\pi}) = \hat{\beta}_0 + \sum_{p=1}^{p} \hat{\beta}_p X_p$$

The fitted coefficients, $\{\hat{\beta}_0, \hat{\beta}_p\}$, are interpreted in units of $log\ odds$.

Visualizing Logistic Regression



Logistic Regression Example

If we fit a logistic regression model to the test-passing data plotted above, we get:

$$\operatorname{logit}(\hat{\pi}_{pass}) = -3.414 + 0.683 X_{study}$$

- A student who does not study at all has -3.414 log odds of passing the exam.
- For each additional hour of study, a student's log odds of passing increase by 0.683 units.

Log odds do not lend themselves to interpretation.

- We can convert the effects back to an odds scale by exponentiation.
- $\hat{\beta}$ has log odds units, but $e^{\hat{\beta}}$ has odds units.

Interpretations

Exponentiating the coefficients also converts the additive effects to multiplicative effects.

- We can interpret $\hat{\beta}$ as we would in linear regression:
 - $\circ~$ A unit change in X_p produces an expected change of \hat{eta}_p units in $logit(\pi)$.
- After exponentiation, however, unit changes in X_p imply multiplicative changes in $O_s = \pi/(1-\pi)$.
 - \circ A unit change in X_p results in multiplying $O_{ extsf{S}}$ by $e^{\hat{eta}_p}$.

Interpretations

Exponentiating the coefficients in our toy test-passing example produces the following interpretations:

- A student who does not study is expected to pass the exam with odds of 0.033.
- For each additional hour a student studies, their odds of passing increase by 1.98 times.
 - Odds of passing are *multiplied* by 1.98 for each extra hour of study.

Interpretations

Exponentiating the coefficients in our toy test-passing example produces the following interpretations:

- A student who does not study is expected to pass the exam with odds of 0.033.
- For each additional hour a student studies, their odds of passing increase by 1.98 *times*.
 - Odds of passing are *multiplied* by 1.98 for each extra hour of study.

Due to the confusing interpretations of the coefficients, we often focus on the valance of the effects:

- Additional study time is associated with increased odds of passing.
- $\hat{eta_p} > 0$ = "Increased Success", $e^{\hat{eta}_p} > 1$ = "Increased Success"

Let's use logistic regression to compute the odds of finishing the UTMB.

```
## Read the UTMB data:
utmb <- readRDS(pasteO(dataDir, "utmb_finish_2017.rds"))</pre>
```

We use the glm() function to estimate generalized linear models.

- To get a logistic regression model, we need to do two things:
 - 1. Specify a binary outcome variable
 - 2. Specify the family = "binomial" argument.

```
## Estimate the logistic regression model:
fit <- glm(Finish ~ Sex, family = binomial(link = "logit"), data = utmb)</pre>
```

```
partSummary(fit, -1)
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) 0.4366 0.1316 3.316 0.000912
## SexMale 0.2789 0.1389 2.007 0.044712
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 3231.3 on 2534 degrees of freedom
## Residual deviance: 3227.3 on 2533 degrees of freedom
## ATC: 3231.3
##
## Number of Fisher Scoring iterations: 4
```

The raw coefficient estimates are in units of log-odds.

• We need to exponentiate the estimates to get odds ratios.

```
library(dplyr)
coef(fit) %>% exp()
## (Intercept) SexMale
## 1.547368 1.321697
```

Multiple Logistic Regression

The preceding example was a simple logistic regression.

- Including multiple predictor variables in the systematic component leads to *multiple logistic regression*.
- The relative differences between simple logistic regression and multiple logistic regression are the same as those between simple linear regression and multiple linear regression.
 - The only important complication is that the regression coefficients become partial effects.

Let's use logistic regression to predict the chances that Titanic passengers survived the sinking based on their age, sex, and ticket class.

```
partSummary(fit, -1)
## Coefficients:
##
             Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.63492 0.37045 9.812 < 2e-16
## age -0.03427 0.00716 -4.787 1.69e-06
## sexmale -2.58872 0.18701 -13.843 < 2e-16
## class2nd -1.19911 0.26158 -4.584 4.56e-06
## class3rd -2.45544 0.25322 -9.697 < 2e-16
##
  (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 1182.77 on 886 degrees of freedom
## Residual deviance: 801.59 on 882 degrees of freedom
## AIC: 811.59
##
## Number of Fisher Scoring iterations: 5
```

Compute odds ratios.

```
(or <- coef(fit) %>% exp())
## (Intercept) age sexmale class2nd class3rd
## 37.8988400 0.9663058 0.0751161 0.3014609 0.0858252
```

Odds ratios smaller than 1.0 can be difficult to explain.

We can ease interpretation by reciprocating the estimates.

```
1 / or

## (Intercept) age sexmale class2nd class3rd

## 0.02638603 1.03486914 13.31272574 3.31717996 11.65158920
```

To convince ourselves that the above operation is sensible, we can compare the inverse odds ratios to the odds ratios we get from predicting the chances of dying.

```
library(magrittr)

fit2 <- titanic %>%
    mutate(died = relevel(survived, ref = "yes")) %$%
    glm(died ~ age + sex + class, family = "binomial")
```

```
partSummary(fit2, -1)
## Coefficients:
##
             Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.63492 0.37045 -9.812 < 2e-16
      0.03427 0.00716 4.787 1.69e-06
## age
## sexmale 2.58872 0.18701 13.843 < 2e-16
## class2nd 1.19911 0.26158 4.584 4.56e-06
## class3rd
             2.45544 0.25322 9.697 < 2e-16
##
  (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 1182.77 on 886 degrees of freedom
## Residual deviance: 801.59 on 882 degrees of freedom
## AIC: 811.59
##
## Number of Fisher Scoring iterations: 5
```

We get the same odds ratios that we derived through reciprocation.

```
coef(fit2) %>% exp()

## (Intercept) age sexmale class2nd class3rd
## 0.02638603 1.03486914 13.31272574 3.31717996 11.65158920

1 / or

## (Intercept) age sexmale class2nd class3rd
## 0.02638603 1.03486914 13.31272574 3.31717996 11.65158920
```

Example in Equations

Here's the symbolic representation of our logistic regression model:

$$\label{eq:logit} logit(\pi_{died}) = \beta_0 + \beta_1 X_{age} + \beta_2 X_{male} + \beta_3 X_{2nd} + \beta_4 X_{3rd}$$

By fitting this model to the titanic data we get:

$$\label{eq:logit} \begin{split} &logit(\hat{\pi}_{died}) = -3.63 + 0.03 X_{age} + 2.59 X_{male} + 1.2 X_{2nd} + 2.46 X_{3rd} \\ &Exponentiating the coefficients produces: \end{split}$$

$$\frac{\hat{\pi}_{died}}{1 - \hat{\pi}_{died}} = \frac{\hat{\pi}_{died}}{\hat{\pi}_{survived}} = 0.03 \times 1.03^{X_{age}} \times 13.31^{X_{male}} \times 3.32^{X_{2nd}} \times 11.65^{X_{3rd}}$$

Exponentiating the Systematic Component

$$\begin{split} & logit(\hat{\pi}_{died}) = -3.63 + 0.03X_{age} + 2.59X_{male} + 1.2X_{2nd} + 2.46X_{3rd} \\ & e^{logit(\hat{\pi}_{died})} = e^{(-3.63 + 0.03X_{age} + 2.59X_{male} + 1.2X_{2nd} + 2.46X_{3rd})} \\ & \frac{\hat{\pi}_{died}}{\hat{\pi}_{survived}} = e^{-3.63} \times e^{0.03X_{age}} \times e^{2.59X_{male}} \times e^{1.2X_{2nd}} \times e^{2.46X_{3rd}} \\ & = e^{-3.63} \times (e^{0.03})^{X_{age}} \times (e^{2.59})^{X_{male}} \times (e^{1.2})^{X_{2nd}} \times (e^{2.46})^{X_{3rd}} \\ & = 0.03 \times 1.03^{X_{age}} \times 13.31^{X_{male}} \times 3.32^{X_{2nd}} \times 11.65^{X_{3rd}} \end{split}$$

Model Comparison

```
## Estimate a restricted model:
fit0 <- update(fit, ". ~ . - class")</pre>
## Check the result:
partSummary(fit0, 1:3)
## Call:
## glm(formula = survived ~ age + sex, family = "binomial", data = titanic)
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.113881 0.208401 5.345 9.05e-08
## age
        -0.002060 0.005865 -0.351 0.725
## sexmale -2.500001 0.167772 -14.901 < 2e-16
##
## (Dispersion parameter for binomial family taken to be 1)
```

Model Comparison

We don't have an \mathbb{R}^2 statistic for logistic regression models, so we need to use a *likelihood ratio test* to compare nested models.

```
anova(fit0, fit, test = "LRT")
## Analysis of Deviance Table
##
## Model 1: survived ~ age + sex
## Model 2: survived ~ age + sex + class
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 884 916.00
## 2 882 801.59 2 114.41 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1</pre>
```

Model Comparison

We can also use information criteria.

```
AIC(fit0, fit)

## df AIC

## fit0 3 921.9989

## fit 5 811.5940

BIC(fit0, fit)

## df BIC

## fit0 3 936.3624

## fit 5 835.5333
```

CLASSIFICATION

Predictions from Logistic Regression

Given a fitted logistic regression model, we can get predictions for new observations of $\{X_p\}$, $\{X_p'\}$.

• Directly applying $\{\hat{\beta}_0,\hat{\beta}_p\}$ to $\{X_p'\}$ will produce predictions on the scale of η :

$$\hat{\eta}' = \hat{\beta}_0 + \sum_{p=1}^P \hat{\beta}_p X_p'$$

• By applying the inverse link function, $g^{-1}(\cdot)$, to $\hat{\eta}'$, we get predicted success probabilities:

$$\hat{\pi}' = g^{-1}(\hat{\eta}')$$

Predictions from Logistic Regression

In logistic regression, the inverse link function, $g^{-1}(\cdot)$, is the *logistic function*:

$$logistic(X) = \frac{e^X}{1 + e^X}$$

So, we convert $\hat{\eta}'$ to $\hat{\pi}'$ by:

$$\hat{\pi}' = \frac{e^{\hat{\eta}'}}{1 + e^{\hat{\eta}'}} = \frac{\exp\left(\hat{\beta}_{0} + \sum_{p=1}^{p} \hat{\beta}_{p} X'_{p}\right)}{1 + \exp\left(\hat{\beta}_{0} + \sum_{p=1}^{p} \hat{\beta}_{p} X'_{p}\right)}$$

Classification with Logistic Regression

Once we have computed the predicted success probabilities, $\hat{\pi}'$, we can use them to classify new observations.

• By choosing a threshold on $\hat{\pi}'$, say $\hat{\pi}' = t$, we can classify the new observations as "Successes" or "Failures":

$$\hat{\mathbf{Y}}' = \left\{ \begin{array}{ll} 1 & \text{if} & \hat{\pi}' \ge t \\ 0 & \text{if} & \hat{\pi}' < t \end{array} \right.$$

Classification Example

Say we want to classify a hypothetical passenger as either having died or survived the sinking.

- Assume this passenger has the following characteristics:
 - They are 17 years old
 - They are male
 - They are a second class passenger

First we plug their predictor data into the fitted model to get their model-implied η :

$$\hat{\eta}_{died} = -3.63 + 0.03 \times 17 + 2.59 \times 1 + 1.2 \times 1 + 2.46 \times 0$$
$$= 0.736$$

Classification Example

Next we convert the predicted η value into a model-implied success probability by applying the logistic function:

$$\frac{e^{0.736}}{1 + e^{0.736}} = 0.676$$

Finally, to make the classification, assume a threshold of $\hat{\pi}' = 0.5$ as the decision boundary.

• Because 0.676 > 0.5 we would classify this passenger as having died.

