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General Linear Model

So far, we’ve been discussing models with this form:

Y = 𝛽0 +
P∑︁
p=1

𝛽pXp + 𝜀

This type of model is known as the general linear model.
• All flavors of linear regression are general linear models.

◦ SLR, MLR
◦ t-test, ANOVA, ANCOVA
◦ Multilevel linear regression models
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Components of the General Linear Model

We can break our model into pieces:

𝜂 = 𝛽0 +
P∑︁
p=1

𝛽pXp

Y = 𝜂 + 𝜀

𝜀 ∼ N(0, 𝜎2), so we can also write:

Y ∼ N(𝜂, 𝜎2)

Where:
• 𝜂 is the systematic component of the model (AKA, the linear predictor).
• The normal distribution, N(·, ·), is the model’s random component.

Image retrieved from: http://www.seaturtle.org/mtn/archives/mtn122/mtn122p1.shtml
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Components of the General Linear Model

The purpose of general linear modeling (i.e., regression modeling) is to
build a model of the outcome’s mean, 𝜇Y .
• In this case, 𝜇Y = 𝜂.
• The systematic component defines the mean of Y .

The random component quantifies variability around 𝜇Y (i.e., error
variance).
• In the general linear model, we assume that this error variance

follows a normal distribution.
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Generalized Linear Model
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Extending the General Linear Model

We can generalize the models we’ve been using in two important ways:

1. Allow for random components other than the normal distribution.

2. Allow for more complicated relations between 𝜇Y and 𝜂.
◦ Allow: g(𝜇Y ) = 𝜂

These extensions lead to the class of generalized linear models (GLMs).

7 of 50



Components of the Generalized Linear Model

The random component in a GLM can be any distribution from the
so-called exponential family.
• The exponential family contains many popular distributions:

◦ Normal
◦ Binomial
◦ Poisson
◦ Many others...

The systematic component of a GLM is exactly the same as it is in
general linear models:

𝜂 = 𝛽0 +
P∑︁
p=1

𝛽pXp

8 of 50



Link Functions

In GLMs, 𝜂 does not directly describe 𝜇Y .
• We first transform 𝜇Y via a link function.
• g(𝜇Y ) = 𝜂

The link function performs two important functions.

1. Linearize the association between X and Y .
◦ Nonlinear: X→ 𝜇Y
◦ Linear: X→ g(𝜇Y )

2. Allows GLMs for outcomes with restricted ranges without requiring
any restrictions on the range of the {Xp}.
◦ In many cases, 𝜇Y has a limited range.

• Counts: 𝜇Y > 0
• Probabilities: 𝜇Y ∈ [0, 1]

◦ When correctly specified, g(𝜇Y ) can take any value on the real line.
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Visualizing Link Functions
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Visualizing Link Functions
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Components of the Generalized Linear Model

Every GLM is built from three components:

1. The systematic component, 𝜂.
◦ A linear function of the predictors, {Xp}.
◦ Describes the association between X and Y .

2. The link function, g(𝜇Y ).
◦ Linearizes the relation between X and Y .
◦ Transforms 𝜇Y so that it can take any value on the real line.

3. The random component, P(Y |g−1 (𝜂))
◦ The distribution of the observed Y .
◦ Quantifies the error variance around 𝜂.
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General Linear Model as a Special Case

The general linear model is a special case of GLM.

1. Systematic component:

𝜂 = 𝛽0 +
P∑︁
p=1

𝛽pXp

2. Link function:

𝜇Y = 𝜂

3. Random component:

Y ∼ N(𝜂, 𝜎2)
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Example

data(iris)

## General linear model:

lmFit <- lm(Petal.Length ~ Petal.Width + Species, data = iris)

## Generalized linear model:

glmFit <- glm(Petal.Length ~ Petal.Width + Species,

family = gaussian(link = "identity"),

data = iris)
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Example

partSummary(lmFit, 2)

## Residuals:

## Min 1Q Median 3Q Max

## -1.02977 -0.22241 -0.01514 0.18180 1.17449

partSummary(glmFit, 2)

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.21140 0.06524 18.568 < 2e-16

## Petal.Width 1.01871 0.15224 6.691 4.41e-10

## Speciesversicolor 1.69779 0.18095 9.383 < 2e-16

## Speciesvirginica 2.27669 0.28132 8.093 2.08e-13
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Example

partSummary(lmFit, 3)

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.21140 0.06524 18.568 < 2e-16

## Petal.Width 1.01871 0.15224 6.691 4.41e-10

## Speciesversicolor 1.69779 0.18095 9.383 < 2e-16

## Speciesvirginica 2.27669 0.28132 8.093 2.08e-13

partSummary(glmFit, 3)

## (Dispersion parameter for gaussian family taken to be 0.1426948)
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Logistic Regression
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Logistic Regression

So why do we care about the GLM when linear regression models have
worked thus far?
• In a word: Classification.

In the classification task, we have a discrete, qualitative outcome.
• We will begin with the situation of two-level outcomes.

◦ Alive or Dead
◦ Pass or Fail
◦ Pay or Default

We want to build a model that predicts class membership based on
some set of interesting features.
• To do so, we will use a very useful type of GLM: logistic regression.
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Classification Example

Suppose we want to know the effect
of study time on the probability of
passing an exam.

• The probability of passing must
be between 0 and 1.

• We care about the probability of
passing, but we only observe
absolute success or failure.
◦ Y ∈ {1,0}

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0 12.5
Hours of Study

P
ro

b
a

b
ili

ty
 o

f 
P

a
ss

in
g

19 of 50



Linear Regression for Binary Outcomes?

What happens if we try to model
these data with linear regression?

• Hmm...notice any problems?
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Logistic Regression Visualized

We get a much better model using
logistic regression.

• The link function ensures legal
predicted values.

• The sigmoidal curve implies
fluctuation in the effectiveness of
extra study time.
◦ More study time is most

beneficial for students with
around 5.5 hours of study. 0.00
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Probabilities, Odds, & Odds-Ratios

In 2017, 2535 people participated in the Ultra-Trail du Mont-Blanc, but
only 66.55% finished the race.

• Below, you can find a cross-tabulation of finishing status and sex.

Finish
Sex No Yes

Female 95 147
Male 753 1540

• What is the probability of finishing for each sex?

• What are the odds of finishing for each sex?

• What is the odds ratio of finishing for males vs. females?
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Defining the Logistic Regression Model

In logistic regression problems, we are modeling binary data:
• Usual coding: Y ∈ {1 = “Success”,0 = “Failure”}.

The Binomial distribution is a good way to represent this kind of data.
• The systematic component in our logistic regression model will be the

binomial distribution.

The mean of the binomial distribution (with N = 1) is the “success”
probability, 𝜋 = P(Y = 1).
• We are interested in modeling 𝜇Y = 𝜋 :

g(𝜋) = 𝛽0 +
P∑︁
p=1

𝛽pXp
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Link Function for Logistic Regression

Because 𝜋 is bounded by 0 and 1 and not linear related to X, we cannot
model it directly—we must apply an appropriate link function.

• Logistic regression uses the logit link.

• Given 𝜋 , we can define the odds of success as:

Os =
𝜋

1 − 𝜋

• Because 𝜋 ∈ [0, 1], we know that Os ≥ 0.

• We take the natural log of the odds as the last step to fully map 𝜋 to
the real line.

logit(𝜋) = ln
( 𝜋

1 − 𝜋

)
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Fully Specified Logistic Regression Model

Our final logistic regression model is:

Y ∼ Bin(𝜋, 1)

logit(𝜋) = 𝛽0 +
P∑︁
p=1

𝛽pXp

The fitted model can be represented as:

logit(𝜋) = 𝛽0 +
P∑︁
p=1

𝛽pXp

The fitted coefficients, {𝛽0, 𝛽p}, are interpreted in units of log odds.
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Visualizing Logistic Regression
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Logistic Regression Example

If we fit a logistic regression model to the test-passing data plotted
above, we get:

logit(𝜋pass) = −3.414 + 0.683Xstudy

• A student who does not study at all has -3.414 log odds of passing the
exam.

• For each additional hour of study, a student’s log odds of passing
increase by 0.683 units.

Log odds do not lend themselves to interpretation.
• We can convert the effects back to an odds scale by exponentiation.
• 𝛽 has log odds units, but e𝛽 has odds units.
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Interpretations

Exponentiating the coefficients also converts the additive effects to
multiplicative effects.

• We can interpret 𝛽 as we would in linear regression:
◦ A unit change in Xp produces an expected change of 𝛽p units in logit(𝜋).

• After exponentiation, however, unit changes in Xp imply multiplicative
changes in Os = 𝜋/(1 − 𝜋).
◦ A unit change in Xp results in multiplying Os by e𝛽p .
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Interpretations

Exponentiating the coefficients in our toy test-passing example produces
the following interpretations:
• A student who does not study is expected to pass the exam with odds

of 0.033.
• For each additional hour a student studies, their odds of passing

increase by 1.98 times.
◦ Odds of passing are multiplied by 1.98 for each extra hour of study.

Due to the confusing interpretations of the coefficients, we often focus
on the valance of the effects:
• Additional study time is associated with increased odds of passing.
• 𝛽p > 0 = “Increased Success”, e𝛽p > 1 = “Increased Success”
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Example

Let’s use logistic regression to compute the odds of finishing the UTMB.

## Read the UTMB data:

utmb <- readRDS(paste0(dataDir, "utmb_finish_2017.rds"))

We use the glm() function to estimate generalized linear models.

• To get a logistic regression model, we need to do two things:
1. Specify a binary outcome variable

2. Specify the family = "binomial" argument.

## Estimate the logistic regression model:

fit <- glm(Finish ~ Sex, family = binomial(link = "logit"), data = utmb)
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Example

partSummary(fit, -1)

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 0.4366 0.1316 3.316 0.000912

## SexMale 0.2789 0.1389 2.007 0.044712

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 3231.3 on 2534 degrees of freedom

## Residual deviance: 3227.3 on 2533 degrees of freedom

## AIC: 3231.3

##

## Number of Fisher Scoring iterations: 4
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Example

The raw coefficient estimates are in units of log-odds.
• We need to exponentiate the estimates to get odds ratios.

library(dplyr)

coef(fit) %>% exp()

## (Intercept) SexMale

## 1.547368 1.321697
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Multiple Logistic Regression

The preceding example was a simple logistic regression.

• Including multiple predictor variables in the systematic component
leads to multiple logistic regression.

• The relative differences between simple logistic regression and
multiple logistic regression are the same as those between simple
linear regression and multiple linear regression.
◦ The only important complication is that the regression coefficients

become partial effects.
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Example

Let’s use logistic regression to predict the chances that Titanic
passengers survived the sinking based on their age, sex, and ticket class.

## Read the data:

titanic <- readRDS(paste0(dataDir, "titanic.rds"))

## Estimate the logistic regression model:

fit <- glm(survived ~ age + sex + class,

data = titanic,

family = "binomial")
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Example

partSummary(fit, -1)

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 3.63492 0.37045 9.812 < 2e-16

## age -0.03427 0.00716 -4.787 1.69e-06

## sexmale -2.58872 0.18701 -13.843 < 2e-16

## class2nd -1.19911 0.26158 -4.584 4.56e-06

## class3rd -2.45544 0.25322 -9.697 < 2e-16

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 1182.77 on 886 degrees of freedom

## Residual deviance: 801.59 on 882 degrees of freedom

## AIC: 811.59

##

## Number of Fisher Scoring iterations: 5
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Example

Compute odds ratios.

(or <- coef(fit) %>% exp())

## (Intercept) age sexmale class2nd class3rd

## 37.8988400 0.9663058 0.0751161 0.3014609 0.0858252

Odds ratios smaller than 1.0 can be difficult to explain.
• We can ease interpretation by reciprocating the estimates.

1 / or

## (Intercept) age sexmale class2nd class3rd

## 0.02638603 1.03486914 13.31272574 3.31717996 11.65158920
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Example

To convince ourselves that the above operation is sensible, we can
compare the inverse odds ratios to the odds ratios we get from
predicting the chances of dying.

library(magrittr)

fit2 <- titanic %>%

mutate(died = relevel(survived, ref = "yes")) %$%

glm(died ~ age + sex + class, family = "binomial")
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Example

partSummary(fit2, -1)

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -3.63492 0.37045 -9.812 < 2e-16

## age 0.03427 0.00716 4.787 1.69e-06

## sexmale 2.58872 0.18701 13.843 < 2e-16

## class2nd 1.19911 0.26158 4.584 4.56e-06

## class3rd 2.45544 0.25322 9.697 < 2e-16

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 1182.77 on 886 degrees of freedom

## Residual deviance: 801.59 on 882 degrees of freedom

## AIC: 811.59

##

## Number of Fisher Scoring iterations: 5
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Example

We get the same odds ratios that we derived through reciprocation.

coef(fit2) %>% exp()

## (Intercept) age sexmale class2nd class3rd

## 0.02638603 1.03486914 13.31272574 3.31717996 11.65158920

1 / or

## (Intercept) age sexmale class2nd class3rd

## 0.02638603 1.03486914 13.31272574 3.31717996 11.65158920
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Example in Equations

Here’s the symbolic representation of our logistic regression model:

logit(𝜋died) = 𝛽0 + 𝛽1Xage + 𝛽2Xmale + 𝛽3X2nd + 𝛽4X3rd

By fitting this model to the titanic data we get:

logit(𝜋died) = −3.63 + 0.03Xage + 2.59Xmale + 1.2X2nd + 2.46X3rd

Exponentiating the coefficients produces:

𝜋died
1 − 𝜋died

=
𝜋died

𝜋survived
= 0.03 × 1.03Xage × 13.31Xmale × 3.32X2nd × 11.65X3rd
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Exponentiating the Systematic Component

logit(𝜋died) = −3.63 + 0.03Xage + 2.59Xmale + 1.2X2nd + 2.46X3rd

elogit(𝜋died ) = e(−3.63 + 0.03Xage + 2.59Xmale + 1.2X2nd + 2.46X3rd)

𝜋died
𝜋survived

= e−3.63 × e0.03Xage × e2.59Xmale × e1.2X2nd × e2.46X3rd

= e−3.63 ×
(
e0.03)Xage × (

e2.59)Xmale × (
e1.2)X2nd ×

(
e2.46

)X3rd

= 0.03 × 1.03Xage × 13.31Xmale × 3.32X2nd × 11.65X3rd
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Model Comparison

## Estimate a restricted model:

fit0 <- update(fit, ". ~ . - class")

## Check the result:

partSummary(fit0, 1:3)

## Call:

## glm(formula = survived ~ age + sex, family = "binomial", data = titanic)

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.113881 0.208401 5.345 9.05e-08

## age -0.002060 0.005865 -0.351 0.725

## sexmale -2.500001 0.167772 -14.901 < 2e-16

##

## (Dispersion parameter for binomial family taken to be 1)
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Model Comparison

We don’t have an R2 statistic for logistic regression models, so we need
to use a likelihood ratio test to compare nested models.

anova(fit0, fit, test = "LRT")

## Analysis of Deviance Table

##

## Model 1: survived ~ age + sex

## Model 2: survived ~ age + sex + class

## Resid. Df Resid. Dev Df Deviance Pr(>Chi)

## 1 884 916.00

## 2 882 801.59 2 114.41 < 2.2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Model Comparison

We can also use information criteria.

AIC(fit0, fit)

## df AIC

## fit0 3 921.9989

## fit 5 811.5940

BIC(fit0, fit)

## df BIC

## fit0 3 936.3624

## fit 5 835.5333
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Classification
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Predictions from Logistic Regression

Given a fitted logistic regression model, we can get predictions for new
observations of {Xp}, {X′

p}.

• Directly applying {𝛽0, 𝛽p} to {X′
p} will produce predictions on the scale

of 𝜂:

𝜂′ = 𝛽0 +
P∑︁
p=1

𝛽pX′
p

• By applying the inverse link function, g−1 (·), to 𝜂′, we get predicted
success probabilities:

𝜋 ′ = g−1 (𝜂′)
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Predictions from Logistic Regression

In logistic regression, the inverse link function, g−1 (·), is the logistic
function:

logistic(X) = eX
1 + eX

So, we convert 𝜂′ to 𝜋 ′ by:

𝜋 ′ =
e𝜂′

1 + e𝜂′ =

exp
(
𝛽0 +∑P

p=1 𝛽pX′
p

)
1 + exp

(
𝛽0 +∑P

p=1 𝛽pX′
p

)
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Classification with Logistic Regression

Once we have computed the predicted success probabilities, 𝜋 ′, we can
use them to classify new observations.

• By choosing a threshold on 𝜋 ′, say 𝜋 ′ = t, we can classify the new
observations as “Successes” or “Failures”:

Ŷ ′ =
{

1 if 𝜋 ′ ≥ t
0 if 𝜋 ′ < t
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Classification Example

Say we want to classify a hypothetical passenger as either having died or
survived the sinking.
• Assume this passenger has the following characteristics:

◦ They are 17 years old
◦ They are male
◦ They are a second class passenger

First we plug their predictor data into the fitted model to get their
model-implied 𝜂:

𝜂died = −3.63 + 0.03 × 17 + 2.59 × 1 + 1.2 × 1 + 2.46 × 0

= 0.736
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Classification Example

Next we convert the predicted 𝜂 value into a model-implied success
probability by applying the logistic function:

e0.736

1 + e0.736 = 0.676

Finally, to make the classification, assume a threshold of 𝜋 ′ = 0.5 as the
decision boundary.
• Because 0.676 > 0.5 we would classify this passenger as having died.
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