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Why Assume?

Consider the following equation:

5 = x + y

What are the values of x and y?

y = 5 − x

What if we assume that y = x?

5 = x + y
0 = x − y

Now we have enough information:

5 = x + x = 2x ⇒ x = y = 2.5
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Assumptions of MLR

The assumptions of the linear model can be stated as follows:

1. The model is linear in the parameters.
◦ This is OK: Y = 𝛽0 + 𝛽1X + 𝛽2Z + 𝛽3XZ + 𝛽4X2 + 𝛽5X3 + 𝜀

◦ This is not: Y = 𝛽0X𝛽1 + 𝜀

2. The predictor matrix is full rank.
◦ N > P
◦ No Xp can be a linear combination of other predictors.
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Assumptions of MLR

3. The predictors are strictly exogenous.
◦ The predictors do not correlated with the errors.
◦ Cov(Ŷ, 𝜀) = 0
◦ E[𝜀n] = 0

4. The errors have constant, finite variance.
◦ Var(𝜀n) = 𝜎2 < ∞

5. The errors are uncorrelated.
◦ Cov(𝜀i, 𝜀j) = 0, i ≠ j

6. The errors are normally distributed.
◦ 𝜀 ∼ N(0, 𝜎2)

6 of 51



Assumptions of MLR

The assumption of spherical errors combines Assumptions 4 and 5.

Var(𝜀) =


𝜎2 0 · · · 0
0 𝜎2 · · · 0

0 0 . . . 0
0 0 · · · 𝜎2


= 𝜎2IN

We can combine Assumptions 3, 4, 5, and 6 by assuming independent
and identically distributed normal errors:

• 𝜀
iid∼ N(0, 𝜎2)
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Consequences of Violating Assumptions

1. If the model is not linear in the parameters, then we’re not even
working with linear regression.
◦ We need to move to entirely different modeling paradigm.

2. If the predictor matrix is not full rank, the model is not estimable.
◦ The parameter estimates cannot be uniquely determined from the data.

3. If the predictors are not exogenous, the estimated regression
coefficients will be biased.

4. If the errors are not spherical, the standard errors will be biased.
◦ The estimated regression coefficients will be unbiased, though.

5. If errors are non-normal, small-sample inferences may be biased.
◦ The justification for some tests and procedures used in regression

analysis may not hold.
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Regression Diagnostics

If some of the assumptions are (grossly) violated, the inferences we
make using the model may be wrong.
• We need to check the tenability of our assumptions before leaning

too heavily on the model estimates.

These checks are called regression diagnostics.
• Graphical visualizations

• Quantitative indices/measures

• Formal statistical tests
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Residual Plots

One of the most useful diagnostic graphics is the plot of residuals vs.
predicted values.
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Residual Plots

We can easily generate a simple plot of residuals vs. fitted values by
plotting the fitted lm() object in R.

out1 <- lm(Price ~ Horsepower,

data = Cars93)

plot(out1, 1)
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Heteroscedasticity
Non-constant error variance (heteroscedasticity) violates Assumption 4.

plot(out1, 1)
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plot(out1, 3)
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Consequences of Heteroscedasticity

Non-constant error variance will not bias the parameter estimates.
• The best fit line is still correct.
• Our measure of uncertainty around that best fit line is wrong.

Heteroscedasticity will bias standard errors (usually downward).
• Test statistics will be too large.
• CIs will be too narrow.
• We will have inflated Type I error rates.

To get valid inference, we need to address (severe) heteroscedasticity.
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Treating Heteroscedasticity

1. Transform your outcome using a concave function (e.g., ln(Y),
√
Y).

◦ These transformations will shrink extreme values more than
small/moderate ones.

◦ It’s usually a good idea to first shift the variable’s scale by setting the
minimum value to 1.

2. Refit the model using weighted least squares.
◦ Create inverse weights using functions of the residual variances or

quantities highly correlated therewith.

3. Use a Heteroscedasticity Consistent (HC) estimate of the asymptotic
covariance matrix.
◦ Robust standard errors, Huber-White standard errors, Sandwich

estimators
◦ HC estimators correct the standard errors for non-constant error variance.
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Example

## The 'sandwich' package provides several HC estimators:

library(sandwich)

## the 'lmtest' package provides fancy testing tools for linear models:

library(lmtest)

## Use sandwich estimator to compute ACOV matrix:

hcCov <- vcovHC(out1)

## Test coefficients with robust SEs:

robTest <- coeftest(out1, vcov = hcCov)

## Test coefficients with default SEs:

defTest <- summary(out1)$coefficients
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Example

## Compare robust and default approaches:

robTest

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.398769 2.078200 -0.6731 0.5026

Horsepower 0.145371 0.017164 8.4696 4.051e-13 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

defTest

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.3987691 1.8200164 -0.7685475 4.441519e-01

Horsepower 0.1453712 0.0118978 12.2183251 6.837464e-21
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Correlated Errors

Errors can become correlated in two basic ways:

1. Serial dependence
◦ When modeling longitudinal data, the errors for a given observational unit

are correlated over time.
◦ We can detect temporal dependence by examining the autocorrelation of

the residuals.

2. Clustering
◦ Your data have some important, unmodeled, grouping structure.

• Children nested within classrooms
• Romantic couples
• Departments within a company

◦ We can detect problematic levels of clustering with the intraclass
correlation coefficient (ICC).
• We need to know the clustering variable to apply the ICC.
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Treating Correlated Errors

Serially dependent errors in a longitudinal model usually indicate an
inadequate model.

• Your model is ignoring some important aspect of the temporal
variation that is being absorbed by the error terms.

• Hopefully, you can add the missing component to your model.
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Treating Correlated Errors

Clustering can be viewed as theoretically meaningful or as a nuisance
factor that just needs to be controlled.

• If the clustering is meaningful, you should model the data using
multilevel modeling.
◦ Hierarchical linear regression
◦ Mixed models
◦ Random effects models

• If the clustering is an uninteresting nuisance, you can use specialized
HC variance estimators that deal with clustering.
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Example

## Read in some data:

LeeBryk <- readRDS(paste0(dataDir, "lee_bryk.rds"))

## Check the data:

str(LeeBryk, vec.len = 3)

'data.frame': 7185 obs. of 5 variables:

$ schoolid: int 1 1 1 1 1 1 1 1 ...

$ math : num 5.88 19.71 20.35 8.78 ...

$ ses : num -1.53 -0.59 -0.53 -0.67 -0.16 0.02 -0.62 -1 ...

$ mses : num -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43 ...

$ sector : Factor w/ 2 levels "public","private": 1 1 1 1 1 1 1 1 ...

## Estimate a linear regression model:

fit <- lm(math ~ ses + sector, data = LeeBryk)

## Calculate the residual ICC:

ICC::ICCbare(x = LeeBryk$schoolid, y = resid(fit))

[1] 0.07487712
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Example
## Robust tests:

coeftest(fit, vcov = vcovCL(fit, ~ schoolid))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.79965 0.20318 58.0746 < 2.2e-16 ***

ses 2.94860 0.12794 23.0475 < 2.2e-16 ***

sectorprivate 1.93495 0.31717 6.1006 1.111e-09 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Raw tests:

summary(fit)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.799654 0.10612759 111.18366 0.000000e+00

ses 2.948605 0.09782968 30.14019 5.002687e-188

sectorprivate 1.934953 0.15249200 12.68888 1.676478e-36

21 of 51



Linearity
Each modeled X must exhibit a linear relation with Y .
• We can define X via nonlinear transformations of the original data.
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Treating Residual Nonlinearity

Nonlinearity in the residual plots is usually a sign of either:
1. Model misspecification
2. Influential observations

This type of model misspecification usually implies omitted functions of
modeled variables.
• Polynomial terms
• Interactions

The solution is to include the omitted term into the model and refit.
• This is very much easier said than done.
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Limitations of Residual Plots

In multiple regression models, basic
residual plots won’t tell us which
predictors exhibit nonlinear
associations.

out3 <-

lm(MPG.highway ~ Horsepower + RPM,

data = Cars93)
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Component + Residual Plots

We can use Component + Residual
Plots (AKA, partial residual plots) to
visualize the unique effects of each
X variable.

library(car)

crPlots(out3)
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Omitted Variables

The most common cause of endogeneity (i.e., violating Assumption 3) is
omitted variable bias.

• If we leave an important predictor variable out of our equation, some
modeled predictors will become endogenous and their estimated
regression slopes will be biased.

• The omitted variable must be correlated with Y and at least one of
the modeled Xp, to be a problem.
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Omitted Variables

Assume the following is the true regression model.

Y = 𝛽0 + 𝛽1X + 𝛽2Z + 𝜀

Now, suppose we omit Z from the model:

Y = 𝛽0 + 𝛽1X + 𝜔

𝜔 = 𝜀 + 𝛽2Z

Our new error, 𝜔 , is a combination of the true error, 𝜀, and the omitted
term, 𝛽2Z.
• Consequently, if X and Z are correlated, omitting Z induces a

correlation between X and 𝜔 (i.e., endogeneity).
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Treating Omitted Variable Bias

Omitted variable bias can have severe consequences, but you can’t
really test for it.

• The errors are correlated with the predictors, but our model is
estimated under the assumption of exogeneity, so the residuals from
our model will generally be uncorrelated with the predictors.

• We mostly have to pro-actively work to include all relevant variables
in our model.
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Normality Assumption

One of the best ways to evaluate
the normality of the error
distribution with a Q-Q Plot.

• Plot the quantiles of the residual
distribution against the
theoretically ideal quantiles.

• We can actually use a Q-Q Plot to
compare any two distributions.

plot(out1, 2)
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Consequences of Violating Normality

In small samples, with fixed predictors, normally distributed errors imply
normal sampling distributions for the regression coefficients.

• In large samples, the central limit theorem implies normal sampling
distributions for the coefficients, regardless of the error distribution.

Prediction intervals require normally distributed errors.

• Confidence intervals for predictions share the same normality
requirements as the coefficients’ sampling distributions.

Parameter estimates will not be fully efficient.

• Standard errors will be larger than they would have been with
normally distributed errors.
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Treating Violations of Normality

We usually don’t need to do anything about non-normal errors.
• The CLT will protect our inferences.

We can use bootstrapping to get around the need for normality.
1. Treat your sample as a synthetic population from which you draw

many new samples (with replacement).
2. Estimate your model in each new sample.
3. The replicates of your estimated parameters generate an empirical

sampling distribution that you can use for inference.

Bootstrapping can be used for inference on pretty much any estimable
parameter, but it won’t work with small samples.
• Need to assume that your sample is representative of the population
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Influential Observations
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Influential Observations

Influential observations contaminate analyses in two ways:

1. Exert too much influence on the fitted regression model

2. Invalidate estimates/inferences by violating assumptions

There are two distinct types of influential observations:

1. Outliers
◦ Observations with extreme outcome values, relative to the other data.
◦ Observations with outcome values that fit the model very badly.

2. High-leverage observations
◦ Observation with extreme predictor values, relative to other data.
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Outliers

Outliers can be identified by scrutinizing the residuals.

• Observations with residuals of large magnitude may be outliers.

• The difficulty arises in quantifying what constitutes a “large” residual.

If the residuals do not have constant variance, then we cannot directly
compare them.

• We need to standardize the residuals in some way.
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Detecting Outliers

We are specifically interested in externally studentized residuals.

• We can’t simply standardize the ordinary residuals.
◦ Internally studentized residuals
◦ Outliers can pull the regression line towards themselves.
◦ The internally studentized residuals for outliers will be too small.

Begin by defining the concept of a deleted residual:

𝜀 (n) = Yn − Ŷ(n)
• 𝜀 (n) quantifies the distance of Yn from the regression line estimated

after excluding the nth observation.
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Studentized Residuals

If we standardize the deleted residual, 𝜀 (n) , we get the externally
studentized residual:

t(n) =
𝜀 (n)
SE𝜀 (n)

The externally studentized residuals have two very useful properties:

1. Each t(n) is scaled equivalently.
◦ We can directly compare different t(n) .

2. The t(n) are Student’s t distributed.
◦ We can quantify outliers in terms of quantiles of the t distribution.
◦ |t(n) | > 3.0 is a common rule of thumb for flagging outliers.
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Studentized Residual Plots

Index plots of the externally
studentized residuals can help
spotlight potential outliers.

• Look for observations that clearly
“stand out from the crowd.”

rstudent(out1) %>% plot()
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High-Leverage Points

We identify high-leverage observations through their leverage values.

• An observation’s leverage, hn, quantifies the extent to which its
predictors affect the fitted regression model.

• Observations with X values very far from the mean, X̄, affect the
fitted model disproportionately.

In simple linear regression, the nth leverage is given by:

hn =
1
N +

(
Xn − X̄

)2

∑N
m=1

(
Xm − X̄

)2
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Leverage Plots

Index plots of the leverage values
can help spotlight high-leverage
points.

• Again, look for observations that
clearly “stand out from the
crowd.”

hatvalues(out1) %>% plot()
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Outliers & Leverages → Influential Points

Observations with high leverage or large (externally) studentized
residuals are not necessarily influential.

• High-leverage observations tend to be more influential than outliers.

• The worst problems arise from observations that are both outliers
and have high leverage.

Measures of influence simultaneously consider extremity in both X and Y
dimensions.

• Observations with high measures of influence are very likely to cause
problems.

40 of 51



Measures of Influence

All measures of influence use the same logic as the deleted residual.

• Compare models estimated from the whole sample to models
estimated from samples excluding individual observations.

One of the most common measures of influence is Cook’s Distance.

Cook’s Dn =
∑N
n=1

(
Ŷn − Ŷ(n)

)2(
P + 1

)
𝜎2

= (P + 1)−1t2n
hn

1 − hn
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Plots of Cook’s Distance

Index plots of Cook’s distances can
help spotlight the influential points.

• Look for observations that clearly
“stand out from the crowd.”

cd <- cooks.distance(out1)

plot(cd)
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Removing Influential Observations
(maxD <- which.max(cd))

28

28

Observation number 28 was the
most influential according to Cook’s
Distance.

• Removing that observation has a
small impact on the fitted
regression line.

• Influential observations don’t
only affect the regression line,
though.
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Removing Influential Observations

## Exclude the influential case:

Cars93.2 <- Cars93[-maxD, ]

## Fit model with reduced sample:

out2 <- lm(Price ~ Horsepower, data = Cars93.2)

round(summary(out1)$coefficients, 6)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.398769 1.820016 -0.768548 0.444152

Horsepower 0.145371 0.011898 12.218325 0.000000

round(summary(out2)$coefficients, 6)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.837646 1.806418 -1.570868 0.119722

Horsepower 0.156750 0.011996 13.066942 0.000000
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Removing Influential Observations

partSummary(out1, 2)

Residuals:

Min 1Q Median 3Q Max

-16.413 -2.792 -0.821 1.803 31.753

partSummary(out2, 2)

Residuals:

Min 1Q Median 3Q Max

-11.4069 -3.0349 -0.5912 1.8530 30.7229
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Removing Influential Observations

summary(out1)[c("sigma", "r.squared", "fstatistic")] %>%

unlist() %>%

head(3)

sigma r.squared fstatistic.value

5.976953 0.621287 149.287468

summary(out2)[c("sigma", "r.squared", "fstatistic")] %>%

unlist() %>%

head(3)

sigma r.squared fstatistic.value

5.7243112 0.6548351 170.7449721
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Removing Influential Observations

(maxDs <- sort(cd) %>% names() %>% tail(2) %>% as.numeric())

[1] 59 28

If we remove the two most
influential observations, 59 and 28,
the fitted regression line barely
changes at all.

• The influences of these two
observations were counteracting
one another.

• We’re probably still better off,
though.
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Removing Influential Observations

## Exclude influential cases:

Cars93.2 <- Cars93[-maxDs, ]

## Fit model with reduced sample:

out2.2 <- lm(Price ~ Horsepower, data = Cars93.2)

round(summary(out1)$coefficients, 6)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.398769 1.820016 -0.768548 0.444152

Horsepower 0.145371 0.011898 12.218325 0.000000

round(summary(out2.2)$coefficients, 6)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.695315 1.494767 -1.134166 0.25977

Horsepower 0.146277 0.009986 14.648807 0.00000
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Removing Influential Observations

partSummary(out1, 2)

Residuals:

Min 1Q Median 3Q Max

-16.413 -2.792 -0.821 1.803 31.753

partSummary(out2.2, 2)

Residuals:

Min 1Q Median 3Q Max

-10.3079 -2.5786 -0.6084 1.9775 14.5793
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Removing Influential Observations

summary(out1)[c("sigma", "r.squared", "fstatistic")] %>%

unlist() %>%

head(3)

sigma r.squared fstatistic.value

5.976953 0.621287 149.287468

summary(out2.2)[c("sigma", "r.squared", "fstatistic")] %>%

unlist() %>%

head(3)

sigma r.squared fstatistic.value

4.7053314 0.7068391 214.5875491
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Treating Influential Points

The most common way to address influential observations is simply to
delete them and refit the model.

• This approach is often effective—and always simple—but it is not
fool-proof.

• Although an observation is influential, we may not be able to justify
excluding it from the analysis.

Robust regression procedures can estimate the model directly in the
presence of influential observations.

• Observations in the tails of the distribution are weighted less in the
estimation process, so outliers and high-leverage points cannot exert
substantial influence on the fit.

• We can do robust regression with the rlm() function from the
MASS package.
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