Introduction to Linear Modeling Fundamental Techniques in Data Science with R

Kyle M. Lang

Department of Methodology & Statistics Utrecht University

Outline

Simple Linear Regression Model Fit

Multiple Linear Regression Model Comparison

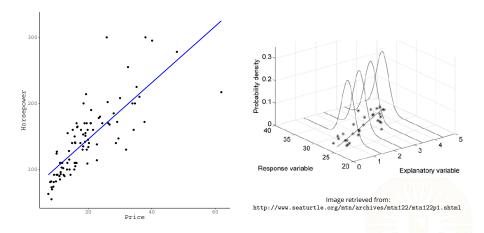
Categorical Predictors Significance Testing for Dummy Codes

Model-Based Prediction Interval Estimates for Prediction

Moderation Categorical Moderators

2 of 69

Visualizations of Simple Linear Regression



Simple Linear Regression Equation

The best fit line is defined by a simple equation:

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$$

The above should look very familiar:

$$Y = mX + b$$
$$= \hat{\beta}_1 X + \hat{\beta}_0$$

 $\hat{\beta}_0$ is the *intercept*.

- The \hat{Y} value when X = 0.
- The expected value of Y when X = 0.

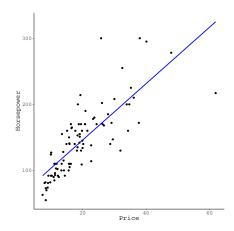
 $\hat{\beta}_1$ is the slope.

- The change in \hat{Y} for a unit change in X.
- The expected change in *Y* for a unit change in *X*.

Thinking about Error

The equation $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$ only describes the best fit line.

• It does not fully quantify the relationship between *Y* and *X*.



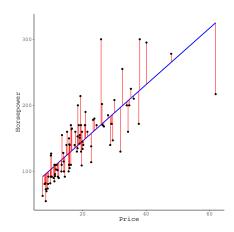
Thinking about Error

The equation $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$ only describes the best fit line.

• It does not fully quantify the relationship between *Y* and *X*.

We still need to account for the estimation error.

$$Y = \hat{\beta}_0 + \hat{\beta}_1 X + \hat{\varepsilon}$$



Estimating the Regression Coefficients

The purpose of regression analysis is to use a sample of *N* observed $\{Y_n, X_n\}$ pairs to find the best fit line defined by $\hat{\beta}_0$ and $\hat{\beta}_1$.

• The most popular method of finding the best fit line involves minimizing the sum of the squared residuals.

•
$$RSS = \sum_{n=1}^{N} \hat{\epsilon}_n^2$$

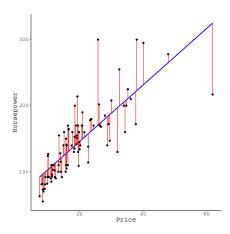
Residuals as the Basis of Estimation

The $\hat{\epsilon}_n$ are defined in terms of deviations between each observed Y_n value and the corresponding \hat{Y}_n .

$$\hat{\varepsilon}_n = Y_n - \hat{Y}_n = Y_n - \left(\hat{\beta}_0 + \hat{\beta}_1 X_n\right)$$

Each $\hat{\varepsilon}_n$ is squared before summing to remove negative values.

$$RSS = \sum_{n=1}^{N} \hat{\varepsilon}_n^2 = \sum_{n=1}^{N} \left(Y_n - \hat{Y}_n \right)^2$$
$$= \sum_{n=1}^{N} \left(Y_n - \hat{\beta}_0 - \hat{\beta}_1 X_n \right)^2$$



Least Squares Example

Estimate the least squares coefficients for our example data:

```
data(Cars93, package = "MASS")
out1 <- lm(Horsepower ~ Price, data = Cars93)
coef(out1)
(Intercept) Price
60.447578 4.273796</pre>
```

The estimated intercept is $\hat{\beta}_0 = 60.45$.

• A free car is expected to have 60.45 horsepower.

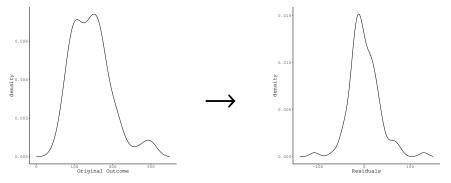
The estimated slope is: $\hat{\beta}_1 = 4.27$.

• For every additional \$1000 in price, a car is expected to gain 4.27 horsepower.

Model Fit

We may also want to know how well our model explains the outcome.

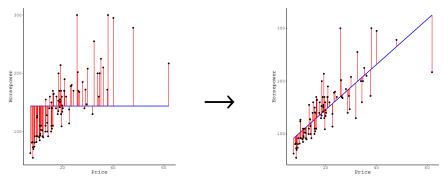
- Our model explains some proportion of the outcome's variability.
- The residual variance $\hat{\sigma}^2 = \operatorname{Var}(\hat{\varepsilon})$ will be less than $\operatorname{Var}(Y)$.



Model Fit

We may also want to know how well our model explains the outcome.

- Our model explains some proportion of the outcome's variability.
- The residual variance $\hat{\sigma}^2 = \operatorname{Var}(\hat{\varepsilon})$ will be less than $\operatorname{Var}(Y)$.



Model Fit

We quantify the proportion of the outcome's variance that is explained by our model using the R^2 statistic:

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

where

$$TSS = \sum_{n=1}^{N} \left(Y_n - \bar{Y} \right)^2 = Var(Y) \times (N-1)$$

For our example problem, we get:

$$R^2 = 1 - \frac{95573}{252363} \approx 0.62$$

Indicating that car price explains 62% of the variability in horsepower.

Model Fit for Prediction

When assessing predictive performance, we will most often use the *mean squared error* (MSE) as our criterion.

$$MSE = \frac{1}{N} \sum_{n=1}^{N} \left(Y_n - \hat{Y}_n \right)^2$$
$$= \frac{1}{N} \sum_{n=1}^{N} \left(Y_n - \hat{\beta}_0 - \sum_{p=1}^{p} \hat{\beta}_p X_{np} \right)^2$$
$$= \frac{RSS}{N}$$

For our example problem, we get:

$$MSE = \frac{95573}{93} \approx 1027.67$$

Interpreting MSE

The MSE quantifies the average squared prediction error.

• Taking the square root improves interpretation.

$$RMSE = \sqrt{MSE}$$

The RMSE estimates the magnitude of the expected prediction error.

For our example problem, we get:

$$RMSE = \sqrt{\frac{95573}{93}} \approx 32.06$$

• When using price as the only predictor of horsepower, we expect prediction errors with magnitudes of 32.06 horsepower.

Information Criteria

We can use *information criteria* to quickly compare *non-nested* models while accounting for model complexity.

Akaike's Information Criterion (AIC)

$$AIC = 2K - 2\hat{\ell}(\theta|X)$$

Bayesian Information Criterion (BIC)

$$BIC = K \ln(N) - 2\hat{\ell}(\theta|X)$$

Information Criteria

We can use *information criteria* to quickly compare *non-nested* models while accounting for model complexity.

• Akaike's Information Criterion (AIC)

 $AIC = \frac{2K}{2} - 2\hat{\ell}(\theta|X)$

Bayesian Information Criterion (BIC)

 $BIC = K \ln(N) - 2\hat{\ell}(\theta|X)$

Information criteria balance two competing forces.

- The optimized loglikelihood quantifies fit to the data.
- The penalty term corrects for model complexity.

Information Criteria

For our example, we get the following estimates of AIC and BIC:

$$AIC = 2(3) - 2(-454.44)$$

= 914.88
$$BIC = 3\ln(93) - 2(-454.44)$$

= 922.48

To compute the AIC/BIC from a fitted lm() object in R:

AIC(out1)

[1] 914.8821

BIC(out1)

[1] 922.4799

14 of 69

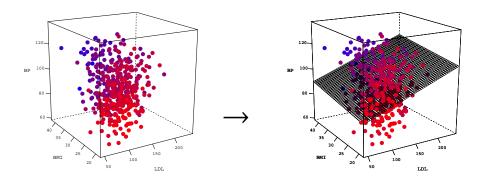
MULTIPLE LINEAR REGRESSION

15 of 69

Graphical Representations

Adding an additional predictor to a simple linear regression problem leads to a 3D point cloud.

• A regression model with two IVs implies a 2D plane in 3D space.



In MLR, we want to examine the *partial effects* of the predictors.

• What is the effect of a predictor after controlling for some other set of variables?

This approach is crucial to controlling confounds and adequately modeling real-world phenomena.


```
## Read in the 'diabetes' dataset:
dDat <- readRDS("../data/diabetes.rds")
## Simple regression with which we're familiar:
out1 <- lm(bp ~ age, data = dDat)</pre>
```

ASKING: What is the effect of age on average blood pressure?

```
## Add in another predictor:
out2 <- lm(bp ~ age + bmi, data = dDat)</pre>
```

ASKING: What is the effect of BMI on average blood pressure, after controlling for age?

We're partialing age out of the effect of BMI on blood pressure.

Example

partSummary(out2, -1)
Residuals:
 Min 1Q Median 3Q Max
-29.287 -8.198 -0.178 8.413 41.026

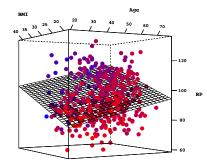
-29.287 -8.198 -0.178 8.413 41.026

coefficients.							
	Estimate	Std. Error	t value	Pr(> t)			
(Intercept)	52.24654	3.83168	13.635	< 2e-16			
age	0.28651	0.04504	6.362	5.02e-10			
bmi	1.08053	0.13363	8.086	6.06e-15			

Residual standard error: 12.18 on 439 degrees of freedom Multiple R-squared: 0.2276, Adjusted R-squared: 0.224 F-statistic: 64.66 on 2 and 439 DF, p-value: < 2.2e-16

Interpretation

- The expected average blood pressure for an unborn patient with a negligible extent is 52.25.
- For each year older, average blood pressure is expected to increase by 0.29 points, after controlling for BMI.
- For each additional point of BMI, average blood pressure is expected to increase by 1.08 points, after controlling for age.



Multiple R²

How much variation in blood pressure is explained by the two models?

• Check the R² values.

Extract R^2 values: r2.1 <- summary(out1)\$r.squared r2.2 <- summary(out2)\$r.squared r2.1

[1] 0.1125117

r2.2

[1] 0.2275606

F-Statistic

How do we know if the R^2 values are significantly greater than zero?

• We use the F-statistic to test H_0 : $R^2 = 0$ vs. H_1 : $R^2 > 0$.

```
f1 <- summary(out1)$fstatistic
f1
     value     numdf     dendf
55.78116     1.00000 440.00000
pf(q = f1[1], df1 = f1[2], df2 = f1[3], lower.tail = FALSE)
     value
4.392569e-13</pre>
```

F-Statistic

```
f2 <- summary(out2)$fstatistic
f2
value numdf dendf</pre>
```

```
64.6647 2.0000 439.0000
```

```
pf(f2[1], f2[2], f2[3], lower.tail = FALSE)
```

value 2.433518e-25

Comparing Models

How do we quantify the additional variation explained by BMI, above and beyond age?

• Compute the ΔR^2

Compute change in R^2:
r2.2 - r2.1

[1] 0.115049

Significance Testing

How do we know if ΔR^2 represents a significantly greater degree of explained variation?

• Use an *F*-test for H_0 : $\Delta R^2 = 0$ vs. H_1 : $\Delta R^2 > 0$

```
## Is that increase significantly greater than zero?
anova(out1, out2)
Analysis of Variance Table
Model 1: bp ~ age
Model 2: bp ~ age + bmi
Res.Df RSS Df Sum of Sq F Pr(>F)
1 440 74873
2 439 65167 1 9706.1 65.386 6.057e-15 ***
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Comparing Models

We can also compare models based on their prediction errors.

• For OLS regression, we usually compare MSE values.

```
mse1 <- MSE(y_pred = predict(out1), y_true = dDat$bp)
mse2 <- MSE(y_pred = predict(out2), y_true = dDat$bp)
mse1
[1] 169.3963
mse2
[1] 147.4367</pre>
```

In this case, the MSE for the model with *BMI* included is smaller.

• We should prefer the the larger model.

Comparing Models

Finally, we can compare models based on information criteria.

AIC(out1, out2) df AIC out1 3 3528.792 out2 4 3469.424 BIC(out1, out2) df BIC out1 3 3541.066 out2 4 3485.789

In this case, both the AIC and the BIC for the model with *BMI* included are smaller.

• We should prefer the the larger model.

CATEGORICAL PREDICTORS

28 of 69

Dummy Coding

The most common way to code categorical predictors is *dummy coding*.

- A *G*-level factor must be converted into a set of *G* 1 dummy codes.
- Each code is a variable on the dataset that equals 1 for observations corresponding to the code's group and equals 0, otherwise.
- The group without a code is called the *reference group*.

Example Dummy Code

Let's look at the simple example of coding biological sex:

	sex	male
1	female	0
2	male	1
3	male	1
4	female	0
5	male	1
6	female	0
7	female	0
8	male	1
9	female	0
10	female	0

Example Dummy Codes

Now, a slightly more complex example:

	drink	juice	tea
1	juice	1	0
2	coffee	0	0
3	tea	0	1
4	tea	0	1
5	tea	0	1
6	tea	0	1
7	juice	1	0
8	tea	0	1
9	coffee	0	0
10	juice	1	0

Using Dummy Codes

To use the dummy codes, we simply include the G - 1 codes as G - 1 predictor variables in our regression model.

$$\begin{split} \mathbf{Y} &= \beta_0 + \beta_1 X_{male} + \varepsilon \\ \mathbf{Y} &= \beta_0 + \beta_1 X_{juice} + \beta_2 X_{tea} + \varepsilon \end{split}$$

- The intercept corresponds to the mean of Y for the reference group.
- Each slope represents the difference between the mean of *Y* in the coded group and the mean of *Y* in the reference group.

Example

```
## Load some data:
data(Cars93, package = "MASS")
## Use a nominal predictor:
out3 <- lm(Price ~ DriveTrain, data = Cars93)
partSummary(out3, -1)
Residuals:
   Min 1Q Median 3Q Max
-14.050 -6.250 -1.236 3.264 32.950
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 17.63000 2.76119 6.385 7.33e-09
DriveTrainFront -0.09418 2.96008 -0.032 0.97469
```

Residual standard error: 8.732 on 90 degrees of freedom Multiple R-squared: 0.2006, Adjusted R-squared: 0.1829 F-statistic: 11.29 on 2 and 90 DF, p-value: 4.202e-05

DriveTrainRear 11.32000 3.51984 3.216 0.00181

- The average price of a four-wheel-drive car is $\hat{\beta}_0 = 17.63$ thousand dollars.
- The average difference in price between front-wheel-drive cars and four-wheel-drive cars is $\hat{\beta}_1 = -0.09$ thousand dollars.
- The average difference in price between rear-wheel-drive cars and four-wheel-drive cars is $\hat{\beta}_2 = 11.32$ thousand dollars.

Example

Include two sets of dummy codes:

```
out4 <- lm(Price ~ Man.trans.avail + DriveTrain, data = Cars93)
partSummary(out4, -c(1, 2))</pre>
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	21.7187	2.9222	7.432	6.25e-11
Man.trans.availYes	-5.8410	1.8223	-3.205	0.00187
DriveTrainFront	-0.2598	2.8189	-0.092	0.92677
DriveTrainRear	10.5169	3.3608	3.129	0.00237

Residual standard error: 8.314 on 89 degrees of freedom Multiple R-squared: 0.2834, Adjusted R-squared: 0.2592 F-statistic: 11.73 on 3 and 89 DF, p-value: 1.51e-06

Interpretations

- The average price of a four-wheel-drive car that does not have a manual transmission option is $\hat{\beta}_0 = 21.72$ thousand dollars.
- After controlling for drive type, the average difference in price between cars that have manual transmissions as an option and those that do not is $\hat{\beta}_1 = -5.84$ thousand dollars.
- After controlling for transmission options, the average difference in price between front-wheel-drive cars and four-wheel-drive cars is $\hat{\beta}_2 = -0.26$ thousand dollars.
- After controlling for transmission options, the average difference in price between rear-wheel-drive cars and four-wheel-drive cars is $\hat{\beta}_3 = 10.52$ thousand dollars.

All R factors have an associated *contrasts* attribute.

- The contrasts define a coding to represent the grouping information.
- Modeling functions code the factors using the rules defined by the contrasts.

<pre>contrasts(Cars93\$Man.trans.avail)</pre>	contrasts(Cars93\$DriveTrain)			
Yes No O Yes 1	Front Rear 4WD 0 0 Front 1 0 Bear 0 1			

For variables with only two levels, we can test the overall factor's significance by evaluating the significance of a single dummy code.

```
out <- lm(Price ~ Man.trans.avail, data = Cars93)

partSummary(out, -c(1, 2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.841 1.623 14.691 <2e-16

Man.trans.availYes -6.603 2.004 -3.295 0.0014

Residual standard error: 9.18 on 91 degrees of freedom
```

Multiple R-squared: 0.1066, Adjusted R-squared: 0.09679 F-statistic: 10.86 on 1 and 91 DF, p-value: 0.001403

For variables with more than two levels, we need to simultaneously evaluate the significance of each of the variable's dummy codes.

```
partSummary(out4, -c(1, 2))
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	21.7187	2.9222	7.432	6.25e-11
Man.trans.availYes	-5.8410	1.8223	-3.205	0.00187
DriveTrainFront	-0.2598	2.8189	-0.092	0.92677
DriveTrainRear	10.5169	3.3608	3.129	0.00237

Residual standard error: 8.314 on 89 degrees of freedom Multiple R-squared: 0.2834, Adjusted R-squared: 0.2592 F-statistic: 11.73 on 3 and 89 DF, p-value: 1.51e-06

```
summary(out4)$r.squared - summary(out)$r.squared
[1] 0.1767569
anova(out, out4)
Analysis of Variance Table
Model 1: Price ~ Man.trans.avail
Model 2: Price ~ Man.trans.avail + DriveTrain
 Res.Df RSS Df Sum of Sq F Pr(>F)
     91 7668.9
1
 89 6151.6 2 1517.3 10.976 5.488e-05 ***
2
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

For models with a single nominal factor is the only predictor, we use the omnibus F-test.

```
partSummary(out3, -c(1, 2))
```

Coefficients:

	Estimate	Std. Erro	or t value	Pr(> t)
(Intercept)	17.63000	2.7611	6.385	7.33e-09
DriveTrainFront	-0.09418	2.9600	08 -0.032	0.97469
DriveTrainRear	11.32000	3.5198	34 3.216	0.00181

Residual standard error: 8.732 on 90 degrees of freedom Multiple R-squared: 0.2006, Adjusted R-squared: 0.1829 F-statistic: 11.29 on 2 and 90 DF, p-value: 4.202e-05

MODEL-BASED PREDICTION

42 of 69

Prediction Example

To fix ideas, let's reconsider the *diabetes* data and the following model:

$$Y_{LDL} = \beta_0 + \beta_1 X_{BP} + \beta_2 X_{gluc} + \beta_3 X_{BMI} + \varepsilon$$

Training this model on the first N = 400 patients' data produces the following fitted model:

$$\hat{Y}_{LDL} = 22.135 + 0.089 X_{BP} + 0.498 X_{gluc} + 1.48 X_{BM}$$

To fix ideas, let's reconsider the *diabetes* data and the following model:

$$Y_{LDL} = \beta_0 + \beta_1 X_{BP} + \beta_2 X_{gluc} + \beta_3 X_{BMI} + \varepsilon$$

Training this model on the first N = 400 patients' data produces the following fitted model:

$$\hat{Y}_{LDL} = 22.135 + 0.089 X_{BP} + 0.498 X_{qluc} + 1.48 X_{BMI}$$

Suppose a new patient presents with BP = 121, gluc = 89, and BMI = 30.6. We can predict their *LDL* score by:

$$\begin{split} \hat{Y}_{LDL} &= 22.135 + 0.089(121) + 0.498(89) + 1.48(30.6) \\ &= 122.463 \end{split}$$

Interval Estimates for Prediction

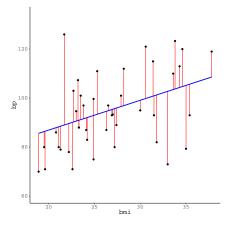
To quantify uncertainty in our predictions, we want to use an appropriate interval estimate.

- Two flavors of interval are applicable to predictions:
 - 1. Confidence intervals for \hat{Y}_m
 - 2. Prediction intervals for a specific observation, Y_m
- The CI for \hat{Y}_m gives a likely range (in the sense of coverage probability and "confidence") for the *m*th value of the true conditional mean.
 - CIs only account for uncertainty in the estimated regression coefficients, $\{\hat{\beta}_0, \hat{\beta}_p\}$.
- The prediction interval for Y_m gives a likely range (in the same sense as CIs) for the *m*th outcome value.
 - Prediction intervals also account for the regression errors, ε .

Confidence vs. Prediction Intervals

Let's visualize the predictions from a simple model:

$$Y_{BP} = \hat{\beta}_0 + \hat{\beta}_1 X_{BMI} + \hat{\varepsilon}$$

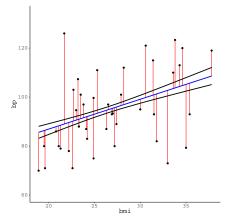


Confidence vs. Prediction Intervals

Let's visualize the predictions from a simple model:

 $Y_{BP} = \hat{\beta}_0 + \hat{\beta}_1 X_{BMI} + \hat{\varepsilon}$

- Cls for \hat{Y} ignore the errors, $\pmb{\epsilon}.$
 - They only care about the best-fit line, $\beta_0 + \beta_1 X_{BMI}$.

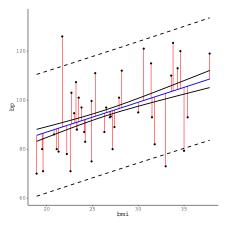


Confidence vs. Prediction Intervals

Let's visualize the predictions from a simple model:

 $Y_{BP} = \hat{\beta}_0 + \hat{\beta}_1 X_{BMI} + \hat{\epsilon}$

- Cls for \hat{Y} ignore the errors, $\pmb{\epsilon}.$
 - They only care about the best-fit line, $\beta_0 + \beta_1 X_{BMI}$.
- Prediction intervals are wider than CIs.
 - They account for the additional uncertainty contributed by *ε*.



Interval Estimates Example

Going back to our hypothetical "new" patient, we get the following 95% interval estimates:

95% $CI_{\hat{Y}} = [115.6; 129.33]$

95% *PI* = [66.56;178.37]

- We can be 95% confident that the average *LDL* of patients with *Glucose* = 89, *BP* = 121, and *BMI* = 30.6 will be somewhere between 115.6 and 129.33.
- We can be 95% confident that the *LDL* of a specific patient with *Glucose* = 89, *BP* = 121, and *BMI* = 30.6 will be somewhere between 66.56 and 178.37.

MODERATION

47 of 69

Moderation

So far we've been discussing *additive models*.

- Additive models allow us to examine the partial effects of several predictors on some outcome.
 - The effect of one predictor does not change based on the values of other predictors.

Now, we'll discuss moderation.

- Moderation allows us to ask *when* one variable, *X*, affects another variable, *Y*.
 - We're considering the conditional effects of *X* on *Y* given certain levels of a third variable *Z*.

Equations

In additive MLR, we might have the following equation:

$$Y=\beta_0+\beta_1X+\beta_2Z+\varepsilon$$

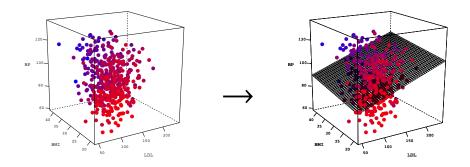
This equation assumes that *X* and *Z* are independent predictors of *Y*.

When X and Z are independent predictors, the following are true:

- *X* and *Z* can be correlated.
- β_1 and β_2 are *partial* regression coefficients.
- The effect of *X* on *Y* is the same at **all levels** of *Z*, and the effect of *Z* on *Y* is the same at **all levels** of *X*.

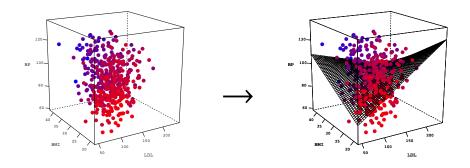
Additive Regression

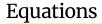
The effect of *X* on *Y* is the same at **all levels** of *Z*.



Moderated Regression

The effect of *X* on *Y* varies **as a function** of *Z*.

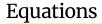




The following derivation is adapted from Hayes (2017).

- When testing moderation, we hypothesize that the effect of *X* on *Y* varies as a function of *Z*.
- We can represent this concept with the following equation:

$$Y = \beta_0 + f(Z)X + \beta_2 Z + \varepsilon \tag{1}$$



The following derivation is adapted from Hayes (2017).

- When testing moderation, we hypothesize that the effect of *X* on *Y* varies as a function of *Z*.
- We can represent this concept with the following equation:

$$Y = \beta_0 + f(Z)X + \beta_2 Z + \varepsilon \tag{1}$$

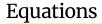
• If we assume that *Z* linearly (and deterministically) affects the relationship between *X* and *Y*, then we can take:

$$f(Z) = \beta_1 + \beta_3 Z \tag{2}$$

• Substituting Equation 2 into Equation 1 leads to:

$$Y = \beta_0 + (\beta_1 + \beta_3 Z) X + \beta_2 Z + \varepsilon$$

53 of 69



• Substituting Equation 2 into Equation 1 leads to:

$$Y=\beta_0+(\beta_1+\beta_3Z)X+\beta_2Z+\varepsilon$$

• Which, after distributing *X* and reordering terms, becomes:

$$Y = \beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z + \varepsilon$$

Now, we have an estimable regression model that quantifies the linear moderation we hypothesized.

$$Y = \beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z + \varepsilon$$

- To test for significant moderation, we simply need to test the significance of the interaction term, *XZ*.
 - Check if $\hat{\beta}_3$ is significantly different from zero.

Interpretation

Given the following equation:

$$Y = \hat{\beta}_0 + \hat{\beta}_1 X + \hat{\beta}_2 Z + \hat{\beta}_3 X Z + \hat{\varepsilon}$$

*β*₃ quantifies the effect of Z on the focal effect (the X → Y effect).

 For a unit change in Z, *β*₃ is the expected change in the effect of X on Y.

• $\hat{\beta}_1$ and $\hat{\beta}_2$ are conditional effects.

- Interpreted where the other predictor is zero.
- For a unit change in X, $\hat{\beta}_1$ is the expected change in Y, when Z = 0.
- For a unit change in Z, $\hat{\beta}_2$ is the expected change in Y, when X = 0.

Still looking at the *diabetes* dataset.

- We suspect that patients' BMIs are predictive of their average blood pressure.
- We further suspect that this effect may be differentially expressed depending on the patients' LDL levels.

Example

```
out <- lm(bp ~ bmi * ldl, data = dDat)
partSummary(out, -c(1, 2))</pre>
```

Coefficients:

	Estimate	Std. Error	t	value	Pr(> t)
(Intercept)	14.480616	14.291677		1.013	0.311514
bmi	2.867825	0.541312		5.298	1.86e-07
ldl	0.448771	0.127160		3.529	0.000461
bmi:ldl	-0.015352	0.004716	-	-3.255	0.001221

Residual standard error: 12.54 on 438 degrees of freedom Multiple R-squared: 0.1834, Adjusted R-squared: 0.1778 F-statistic: 32.78 on 3 and 438 DF, p-value: < 2.2e-16

INTERACTION

LDL cholesterol level significantly influences the effect of BMI on average blood pressure ($\beta = -0.02$, t[438] = -3.26, p = 0.001).

• For each additional point of LDL cholesterol, the effect of BMI on BP decreases by 0.02 units.

Interpretation

CONDITIONAL EFFECTS

There is significant conditional effect of BMI on average blood pressure, when LDL = 0 (β = 2.87, *t*[438] = 5.3, *p* < 0.001).

 For patients with zero LDL cholesterol, each additional point of BMI produces a change of 2.87 units in expected average blood pressure.

There is significant conditional effect of LDL cholesterol level on average blood pressure, when BMI = 0 (β = 0.45, t[438] = 3.53, p < 0.001).

• For patients with BMI = 0, each additional point of LDL cholesterol increases their expected average blood pressure by 0.45 units.

Interpretation

INTERCEPT

The expected average blood pressure for a patient with BMI = 0 and zero LDL cholesterol is 14.48.

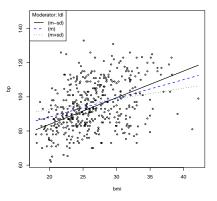
MODEL FIT

BMI, LDL cholesterol level, and the interaction therebetween explain approximately 18.3% of the variability in average blood pressure.

• This proportion of explained variability is significantly greater than zero (F[3, 438] = 32.78, p < 0.001).

Visualizing the Interaction

We can get a better idea of the patterns of moderation by plotting the focal effect at conditional values of the moderator.



Categorical Moderators

Categorical moderators encode group-specific effects.

• E.g., if we include *sex* as a moderator, we are modeling separate focal effects for males and females.

Given a set of codes representing our moderator, we specify the interactions as before:

$$Y_{total} = \beta_0 + \beta_1 X_{inten} + \beta_2 Z_{male} + \beta_3 X_{inten} Z_{male} + \varepsilon$$

$$\begin{aligned} Y_{total} &= \beta_0 + \beta_1 X_{inten} + \beta_2 Z_{lo} + \beta_3 Z_{mid} + \beta_4 Z_{hi} \\ &+ \beta_5 X_{inten} Z_{lo} + \beta_6 X_{inten} Z_{mid} + \beta_7 X_{inten} Z_{hi} + \varepsilon \end{aligned}$$

Example

tanSat:sexmale -0.9482 0.7177 -1.321 0.18978

Residual standard error: 9.267 on 91 degrees of freedom Multiple R-squared: 0.08955, Adjusted R-squared: 0.05954 F-statistic: 2.984 on 3 and 91 DF, p-value: 0.03537

INTERACTION

Sex does not significantly influence the effect of tangible satisfaction ratings on depression levels ($\beta = -0.95$, t[91] = -1.32, p = 0.19).

- In other words, there is not significant a difference between males and females in the way that tangible satisfaction ratings affect depression levels.
- In this sample, the effect of tangible satisfaction ratings on depression is 0.95 units lower for males than for females.

Interpretation

CONDITIONAL EFFECTS

There is not a significant effect of tangible satisfaction ratings on depression levels for females ($\beta = -0.58$, t[91] = -1.6, p = 0.114).

• For females in this sample, each additional point of rated tangible satisfaction produces a change of -0.58 units in expected depression level.

There is not a significant conditional effect of sex on depression levels, when tangible satisfaction rating is zero ($\beta = 14.37$, t[91] = 1.18, p = 0.242).

• In this sample, males with zero tangible satisfaction have 14.37 higher depression levels than females with zero tangible satisfaction.

Interpretation

INTERCEPT

The expected depression level for females with a zero tangible satisfaction rating is 20.85.

MODEL FIT

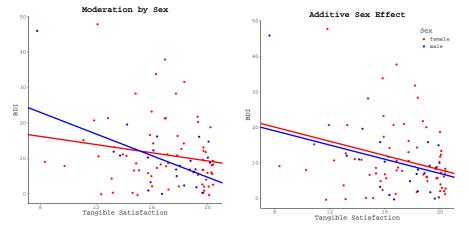
Sex, tangible satisfaction rating, and their interaction explain approximately 9% of the variability in depression levels.

• This proportion of explained variability is significantly greater than zero (F[3, 91] = 2.98, p = 0.035).

Visualizing Categorical Moderation

$$\hat{Y}_{BDI} = 20.85 - 0.58X_{tsat} + 14.37Z_{male} - 0.95X_{tsat}Z_{male}$$

$$\hat{Y}_{BDI} = 28.10 - 1.00X_{tsat} - 1.05Z_{male}$$





Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York: Guilford Press.

