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Visualizations of Simple Linear Regression
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Image retrieved from:
http://www.seaturtle.org/mtn/archives/mtn122/mtn122p1.shtml
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Simple Linear Regression Equation
The best fit line is defined by a simple equation:

Ŷ = 𝛽0 + 𝛽1X

The above should look very familiar:
Y =mX + b
= 𝛽1X + 𝛽0

𝛽0 is the intercept.
• The Ŷ value when X = 0.
• The expected value of Y when X = 0.
𝛽1 is the slope.
• The change in Ŷ for a unit change in X.
• The expected change in Y for a unit change in X.
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Thinking about Error

The equation Ŷ = 𝛽0 + 𝛽1X onlydescribes the best fit line.
• It does not fully quantify therelationship between Y and X.
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Thinking about Error

The equation Ŷ = 𝛽0 + 𝛽1X onlydescribes the best fit line.
• It does not fully quantify therelationship between Y and X.

We still need to account for theestimation error.
Y = 𝛽0 + 𝛽1X + 𝜀
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Estimating the Regression Coefficients

The purpose of regression analysis is to use a sample of N observed
{Yn,Xn} pairs to find the best fit line defined by 𝛽0 and 𝛽1.
• The most popular method of finding the best fit line involvesminimizing the sum of the squared residuals.
• RSS =∑N

n=1 𝜀
2
n
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Residuals as the Basis of Estimation

The 𝜀n are defined in terms ofdeviations between each observed
Yn value and the corresponding Ŷn.

𝜀n = Yn − Ŷn = Yn −
(
𝛽0 + 𝛽1Xn

)
Each 𝜀n is squared before summingto remove negative values.
RSS =

N∑︁
n=1

𝜀2
n =

N∑︁
n=1

(
Yn − Ŷn

)2

=

N∑︁
n=1

(
Yn − 𝛽0 − 𝛽1Xn

)2

100

200

300

20 40 60
Price

H
o

rs
e

p
o

w
e

r

7 of 69



Least Squares Example

Estimate the least squares coefficients for our example data:
data(Cars93, package = "MASS")

out1 <- lm(Horsepower ~ Price, data = Cars93)

coef(out1)

(Intercept) Price

60.447578 4.273796

The estimated intercept is 𝛽0 = 60.45.
• A free car is expected to have 60.45 horsepower.

The estimated slope is: 𝛽1 = 4.27.
• For every additional $1000 in price, a car is expected to gain 4.27horsepower.
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Model Fit

We may also want to know how well our model explains the outcome.
• Our model explains some proportion of the outcome’s variability.
• The residual variance 𝜎2 = Var(𝜀) will be less than Var(Y).
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Model Fit

We may also want to know how well our model explains the outcome.
• Our model explains some proportion of the outcome’s variability.
• The residual variance 𝜎2 = Var(𝜀) will be less than Var(Y).
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Model Fit
We quantify the proportion of the outcome’s variance that is explained byour model using the R2 statistic:

R2 =
TSS − RSS
TSS = 1 − RSSTSS

where
TSS =

N∑︁
n=1

(
Yn − Ȳ

)2
= Var(Y) × (N − 1)

For our example problem, we get:
R2 = 1 − 95573

252363 ≈ 0.62

Indicating that car price explains 62% of the variability in horsepower.
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Model Fit for Prediction
When assessing predictive performance, we will most often use the
mean squared error (MSE) as our criterion.

MSE =
1
N

N∑︁
n=1

(
Yn − Ŷn

)2

=
1
N

N∑︁
n=1

©«Yn − 𝛽0 −
P∑︁
p=1

𝛽pXnpª®¬
2

=
RSS
N

For our example problem, we get:
MSE =

95573
93 ≈ 1027.67
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Interpreting MSE

The MSE quantifies the average squared prediction error.
• Taking the square root improves interpretation.

RMSE =
√
MSE

The RMSE estimates the magnitude of the expected prediction error.
• For our example problem, we get:

RMSE =

√︂
95573

93 ≈ 32.06

• When using price as the only predictor of horsepower, we expectprediction errors with magnitudes of 32.06 horsepower.
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Information Criteria

We can use information criteria to quickly compare non-nested modelswhile accounting for model complexity.
• Akaike’s Information Criterion (AIC)

AIC = 2K − 2ℓ̂ (𝜃 |X)

• Bayesian Information Criterion (BIC)
BIC = K ln(N) − 2ℓ̂ (𝜃 |X)

Information criteria balance two competing forces.
• The optimized loglikelihood quantifies fit to the data.
• The penalty term corrects for model complexity.
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Information Criteria

For our example, we get the following estimates of AIC and BIC:
AIC = 2(3) − 2(−454.44)

= 914.88

BIC = 3 ln(93) − 2(−454.44)
= 922.48

To compute the AIC/BIC from a fitted lm() object in R:
AIC(out1)

[1] 914.8821

BIC(out1)

[1] 922.4799
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Multiple Linear Regression
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Graphical Representations
Adding an additional predictor to a simple linear regression problemleads to a 3D point cloud.
• A regression model with two IVs implies a 2D plane in 3D space.
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Partial Effects

In MLR, we want to examine the partial effects of the predictors.
• What is the effect of a predictor after controlling for some other set ofvariables?

This approach is crucial to controlling confounds and adequatelymodeling real-world phenomena.
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Example

## Read in the 'diabetes' dataset:

dDat <- readRDS("../data/diabetes.rds")

## Simple regression with which we're familiar:

out1 <- lm(bp ~ age, data = dDat)

Asking: What is the effect of age on average blood pressure?
## Add in another predictor:

out2 <- lm(bp ~ age + bmi, data = dDat)

Asking: What is the effect of BMI on average blood pressure, after
controlling for age?

• We’re partialing age out of the effect of BMI on blood pressure.
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Example

partSummary(out2, -1)

Residuals:

Min 1Q Median 3Q Max

-29.287 -8.198 -0.178 8.413 41.026

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 52.24654 3.83168 13.635 < 2e-16

age 0.28651 0.04504 6.362 5.02e-10

bmi 1.08053 0.13363 8.086 6.06e-15

Residual standard error: 12.18 on 439 degrees of freedom

Multiple R-squared: 0.2276, Adjusted R-squared: 0.224

F-statistic: 64.66 on 2 and 439 DF, p-value: < 2.2e-16
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Interpretation

• The expected average bloodpressure for an unborn patientwith a negligible extent is 52.25.
• For each year older, averageblood pressure is expected toincrease by 0.29 points, aftercontrolling for BMI.
• For each additional point of BMI,average blood pressure isexpected to increase by 1.08points, after controlling for age.
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Multiple R2

How much variation in blood pressure is explained by the two models?
• Check the R2 values.
## Extract R^2 values:

r2.1 <- summary(out1)$r.squared

r2.2 <- summary(out2)$r.squared

r2.1

[1] 0.1125117

r2.2

[1] 0.2275606
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F-Statistic

How do we know if the R2 values are significantly greater than zero?
• We use the F-statistic to test H0 : R2 = 0 vs. H1 : R2 > 0.
f1 <- summary(out1)$fstatistic

f1

value numdf dendf

55.78116 1.00000 440.00000

pf(q = f1[1], df1 = f1[2], df2 = f1[3], lower.tail = FALSE)

value

4.392569e-13
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F-Statistic

f2 <- summary(out2)$fstatistic

f2

value numdf dendf

64.6647 2.0000 439.0000

pf(f2[1], f2[2], f2[3], lower.tail = FALSE)

value

2.433518e-25
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Comparing Models

How do we quantify the additional variation explained by BMI, aboveand beyond age?
• Compute the ΔR2

## Compute change in R^2:

r2.2 - r2.1

[1] 0.115049
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Significance Testing

How do we know if ΔR2 represents a significantly greater degree ofexplained variation?
• Use an F-test for H0 : ΔR2 = 0 vs. H1 : ΔR2 > 0

## Is that increase significantly greater than zero?

anova(out1, out2)

Analysis of Variance Table

Model 1: bp ~ age

Model 2: bp ~ age + bmi

Res.Df RSS Df Sum of Sq F Pr(>F)

1 440 74873

2 439 65167 1 9706.1 65.386 6.057e-15 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Comparing Models

We can also compare models based on their prediction errors.
• For OLS regression, we usually compare MSE values.
mse1 <- MSE(y_pred = predict(out1), y_true = dDat$bp)

mse2 <- MSE(y_pred = predict(out2), y_true = dDat$bp)

mse1

[1] 169.3963

mse2

[1] 147.4367

In this case, the MSE for the model with BMI included is smaller.
• We should prefer the the larger model.
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Comparing Models

Finally, we can compare models based on information criteria.
AIC(out1, out2)

df AIC

out1 3 3528.792

out2 4 3469.424

BIC(out1, out2)

df BIC

out1 3 3541.066

out2 4 3485.789

In this case, both the AIC and the BIC for the model with BMI includedare smaller.
• We should prefer the the larger model.
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Categorical Predictors
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Dummy Coding

The most common way to code categorical predictors is dummy coding.
• A G-level factor must be converted into a set of G − 1 dummy codes.
• Each code is a variable on the dataset that equals 1 for observationscorresponding to the code’s group and equals 0, otherwise.
• The group without a code is called the reference group.
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Example Dummy Code

Let’s look at the simple example of coding biological sex:
sex male

1 female 02 male 13 male 14 female 05 male 16 female 07 female 08 male 19 female 010 female 0
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Example Dummy Codes

Now, a slightly more complex example:
drink juice tea

1 juice 1 02 coffee 0 03 tea 0 14 tea 0 15 tea 0 16 tea 0 17 juice 1 08 tea 0 19 coffee 0 010 juice 1 0

31 of 69



Using Dummy Codes

To use the dummy codes, we simply include the G − 1 codes as G − 1predictor variables in our regression model.
Y = 𝛽0 + 𝛽1Xmale + 𝜀

Y = 𝛽0 + 𝛽1Xjuice + 𝛽2Xtea + 𝜀

• The intercept corresponds to the mean of Y for the reference group.
• Each slope represents the difference between the mean of Y in thecoded group and the mean of Y in the reference group.
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Example

## Load some data:

data(Cars93, package = "MASS")

## Use a nominal predictor:

out3 <- lm(Price ~ DriveTrain, data = Cars93)

partSummary(out3, -1)

Residuals:

Min 1Q Median 3Q Max

-14.050 -6.250 -1.236 3.264 32.950

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.63000 2.76119 6.385 7.33e-09

DriveTrainFront -0.09418 2.96008 -0.032 0.97469

DriveTrainRear 11.32000 3.51984 3.216 0.00181

Residual standard error: 8.732 on 90 degrees of freedom

Multiple R-squared: 0.2006, Adjusted R-squared: 0.1829

F-statistic: 11.29 on 2 and 90 DF, p-value: 4.202e-05
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Interpretations

• The average price of a four-wheel-drive car is 𝛽0 = 17.63 thousanddollars.
• The average difference in price between front-wheel-drive cars and

four-wheel-drive cars is 𝛽1 = −0.09 thousand dollars.
• The average difference in price between rear-wheel-drive cars and

four-wheel-drive cars is 𝛽2 = 11.32 thousand dollars.
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Example

Include two sets of dummy codes:
out4 <- lm(Price ~ Man.trans.avail + DriveTrain, data = Cars93)

partSummary(out4, -c(1, 2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 21.7187 2.9222 7.432 6.25e-11

Man.trans.availYes -5.8410 1.8223 -3.205 0.00187

DriveTrainFront -0.2598 2.8189 -0.092 0.92677

DriveTrainRear 10.5169 3.3608 3.129 0.00237

Residual standard error: 8.314 on 89 degrees of freedom

Multiple R-squared: 0.2834, Adjusted R-squared: 0.2592

F-statistic: 11.73 on 3 and 89 DF, p-value: 1.51e-06
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Interpretations

• The average price of a four-wheel-drive car that does not have a
manual transmission option is 𝛽0 = 21.72 thousand dollars.

• After controlling for drive type, the average difference in pricebetween cars that have manual transmissions as an option and those
that do not is 𝛽1 = −5.84 thousand dollars.

• After controlling for transmission options, the average difference inprice between front-wheel-drive cars and four-wheel-drive cars is
𝛽2 = −0.26 thousand dollars.

• After controlling for transmission options, the average difference inprice between rear-wheel-drive cars and four-wheel-drive cars is
𝛽3 = 10.52 thousand dollars.
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Contrasts

All R factors have an associated contrasts attribute.
• The contrasts define a coding to represent the grouping information.
• Modeling functions code the factors using the rules defined by thecontrasts.

contrasts(Cars93$Man.trans.avail)

Yes

No 0

Yes 1

contrasts(Cars93$DriveTrain)

Front Rear

4WD 0 0

Front 1 0

Rear 0 1
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Significance Testing

For variables with only two levels, we can test the overall factor’ssignificance by evaluating the significance of a single dummy code.
out <- lm(Price ~ Man.trans.avail, data = Cars93)

partSummary(out, -c(1, 2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.841 1.623 14.691 <2e-16

Man.trans.availYes -6.603 2.004 -3.295 0.0014

Residual standard error: 9.18 on 91 degrees of freedom

Multiple R-squared: 0.1066, Adjusted R-squared: 0.09679

F-statistic: 10.86 on 1 and 91 DF, p-value: 0.001403
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Significance Testing

For variables with more than two levels, we need to simultaneouslyevaluate the significance of each of the variable’s dummy codes.
partSummary(out4, -c(1, 2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 21.7187 2.9222 7.432 6.25e-11

Man.trans.availYes -5.8410 1.8223 -3.205 0.00187

DriveTrainFront -0.2598 2.8189 -0.092 0.92677

DriveTrainRear 10.5169 3.3608 3.129 0.00237

Residual standard error: 8.314 on 89 degrees of freedom

Multiple R-squared: 0.2834, Adjusted R-squared: 0.2592

F-statistic: 11.73 on 3 and 89 DF, p-value: 1.51e-06
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Significance Testing

summary(out4)$r.squared - summary(out)$r.squared

[1] 0.1767569

anova(out, out4)

Analysis of Variance Table

Model 1: Price ~ Man.trans.avail

Model 2: Price ~ Man.trans.avail + DriveTrain

Res.Df RSS Df Sum of Sq F Pr(>F)

1 91 7668.9

2 89 6151.6 2 1517.3 10.976 5.488e-05 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Significance Testing

For models with a single nominal factor is the only predictor, we use theomnibus F-test.
partSummary(out3, -c(1, 2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.63000 2.76119 6.385 7.33e-09

DriveTrainFront -0.09418 2.96008 -0.032 0.97469

DriveTrainRear 11.32000 3.51984 3.216 0.00181

Residual standard error: 8.732 on 90 degrees of freedom

Multiple R-squared: 0.2006, Adjusted R-squared: 0.1829

F-statistic: 11.29 on 2 and 90 DF, p-value: 4.202e-05

41 of 69



Model-Based Prediction
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Prediction Example

To fix ideas, let’s reconsider the diabetes data and the following model:
YLDL = 𝛽0 + 𝛽1XBP + 𝛽2Xgluc + 𝛽3XBMI + 𝜀

Training this model on the first N = 400 patients’ data produces thefollowing fitted model:
ŶLDL = 22.135 + 0.089XBP + 0.498Xgluc + 1.48XBMI

Suppose a new patient presents with BP = 121, gluc = 89, and
BMI = 30.6. We can predict their LDL score by:

ŶLDL = 22.135 + 0.089(121) + 0.498(89) + 1.48(30.6)
= 122.463
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Interval Estimates for Prediction

To quantify uncertainty in our predictions, we want to use anappropriate interval estimate.
• Two flavors of interval are applicable to predictions:

1. Confidence intervals for Ŷm
2. Prediction intervals for a specific observation, Ym

• The CI for Ŷm gives a likely range (in the sense of coverage probabilityand “confidence”) for the mth value of the true conditional mean.
◦ CIs only account for uncertainty in the estimated regression coefficients,

{𝛽0, 𝛽p}.
• The prediction interval for Ym gives a likely range (in the same senseas CIs) for the mth outcome value.

◦ Prediction intervals also account for the regression errors, 𝜀.
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Confidence vs. Prediction Intervals

Let’s visualize the predictions from asimple model:
YBP = 𝛽0 + 𝛽1XBMI + 𝜀

• CIs for Ŷ ignore the errors, 𝜀.
◦ They only care about the best-fitline, 𝛽0 + 𝛽1XBMI.

• Prediction intervals are widerthan CIs.
◦ They account for the additionaluncertainty contributed by 𝜀.
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Interval Estimates Example

Going back to our hypothetical “new” patient, we get the following 95%interval estimates:
95% CIŶ = [115.6; 129.33]

95% PI = [66.56; 178.37]

• We can be 95% confident that the average LDL of patients with
Glucose = 89, BP = 121, and BMI = 30.6 will be somewhere between115.6 and 129.33.

• We can be 95% confident that the LDL of a specific patient with
Glucose = 89, BP = 121, and BMI = 30.6 will be somewhere between66.56 and 178.37.
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Moderation
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Moderation

So far we’ve been discussing additive models.
• Additive models allow us to examine the partial effects of severalpredictors on some outcome.

◦ The effect of one predictor does not change based on the values of otherpredictors.
Now, we’ll discuss moderation.
• Moderation allows us to ask when one variable, X, affects anothervariable, Y .

◦ We’re considering the conditional effects of X on Y given certain levels ofa third variable Z.
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Equations

In additive MLR, we might have the following equation:
Y = 𝛽0 + 𝛽1X + 𝛽2Z + 𝜀

This equation assumes that X and Z are independent predictors of Y .
When X and Z are independent predictors, the following are true:
• X and Z can be correlated.
• 𝛽1 and 𝛽2 are partial regression coefficients.
• The effect of X on Y is the same at all levels of Z, and the effect of Zon Y is the same at all levels of X.
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Additive Regression

The effect of X on Y is the same at all levels of Z.
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Moderated Regression

The effect of X on Y varies as a function of Z.
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Equations

The following derivation is adapted from Hayes (2017).
• When testing moderation, we hypothesize that the effect of X on Yvaries as a function of Z.
• We can represent this concept with the following equation:

Y = 𝛽0 + f (Z)X + 𝛽2Z + 𝜀 (1)

• If we assume that Z linearly (and deterministically) affects therelationship between X and Y , then we can take:
f (Z) = 𝛽1 + 𝛽3Z (2)
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Equations

• Substituting Equation 2 into Equation 1 leads to:
Y = 𝛽0 + (𝛽1 + 𝛽3Z)X + 𝛽2Z + 𝜀

• Which, after distributing X and reordering terms, becomes:
Y = 𝛽0 + 𝛽1X + 𝛽2Z + 𝛽3XZ + 𝜀
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Testing Moderation

Now, we have an estimable regression model that quantifies the linearmoderation we hypothesized.�� ��Y = 𝛽0 + 𝛽1X + 𝛽2Z + 𝛽3XZ + 𝜀

• To test for significant moderation, we simply need to test thesignificance of the interaction term, XZ.
◦ Check if 𝛽3 is significantly different from zero.
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Interpretation

Given the following equation:
Y = 𝛽0 + 𝛽1X + 𝛽2Z + 𝛽3XZ + 𝜀

• 𝛽3 quantifies the effect of Z on the focal effect (the X → Y effect).
◦ For a unit change in Z, 𝛽3 is the expected change in the effect of X on Y .

• 𝛽1 and 𝛽2 are conditional effects.
◦ Interpreted where the other predictor is zero.
◦ For a unit change in X, 𝛽1 is the expected change in Y , when Z = 0.
◦ For a unit change in Z, 𝛽2 is the expected change in Y , when X = 0.
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Example

Still looking at the diabetes dataset.
• We suspect that patients’ BMIs are predictive of their average bloodpressure.
• We further suspect that this effect may be differentially expresseddepending on the patients’ LDL levels.
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Example

out <- lm(bp ~ bmi * ldl, data = dDat)

partSummary(out, -c(1, 2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.480616 14.291677 1.013 0.311514

bmi 2.867825 0.541312 5.298 1.86e-07

ldl 0.448771 0.127160 3.529 0.000461

bmi:ldl -0.015352 0.004716 -3.255 0.001221

Residual standard error: 12.54 on 438 degrees of freedom

Multiple R-squared: 0.1834, Adjusted R-squared: 0.1778

F-statistic: 32.78 on 3 and 438 DF, p-value: < 2.2e-16
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Interpretation

Interaction
LDL cholesterol level significantly influences the effect of BMI on averageblood pressure (𝛽 = −0.02, t[438] = −3.26, p = 0.001).
• For each additional point of LDL cholesterol, the effect of BMI on BPdecreases by 0.02 units.
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Interpretation

Conditional Effects
There is significant conditional effect of BMI on average blood pressure,when LDL = 0 (𝛽 = 2.87, t[438] = 5.3, p < 0.001).
• For patients with zero LDL cholesterol, each additional point of BMIproduces a change of 2.87 units in expected average blood pressure.

There is significant conditional effect of LDL cholesterol level on averageblood pressure, when BMI = 0 (𝛽 = 0.45, t[438] = 3.53, p < 0.001).
• For patients with BMI = 0, each additional point of LDL cholesterolincreases their expected average blood pressure by 0.45 units.
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Interpretation

Intercept
The expected average blood pressure for a patient with BMI = 0 and zeroLDL cholesterol is 14.48.
Model Fit
BMI, LDL cholesterol level, and the interaction therebetween explainapproximately 18.3% of the variability in average blood pressure.
• This proportion of explained variability is significantly greater thanzero (F[3,438] = 32.78, p < 0.001).
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Visualizing the Interaction

We can get a better idea of thepatterns of moderation by plottingthe focal effect at conditional valuesof the moderator.
library(rockchalk)

plotSlopes(out,

plotx = "bmi",

modx = "ldl",

modxVals = "std.dev")
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Categorical Moderators

Categorical moderators encode group-specific effects.
• E.g., if we include sex as a moderator, we are modeling separate focaleffects for males and females.

Given a set of codes representing our moderator, we specify theinteractions as before:
Ytotal = 𝛽0 + 𝛽1Xinten + 𝛽2Zmale + 𝛽3XintenZmale + 𝜀

Ytotal = 𝛽0 + 𝛽1Xinten + 𝛽2Zlo + 𝛽3Zmid + 𝛽4Zhi
+ 𝛽5XintenZlo + 𝛽6XintenZmid + 𝛽7XintenZhi + 𝜀
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Example

## Load data:

socSup <- readRDS(paste0(dataDir, "social_support.rds"))

## Estimate the moderated regression model:

out <- lm(bdi ~ tanSat * sex, data = socSup)

partSummary(out, -c(1, 2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 20.8478 6.2114 3.356 0.00115

tanSat -0.5772 0.3614 -1.597 0.11372

sexmale 14.3667 12.2054 1.177 0.24223

tanSat:sexmale -0.9482 0.7177 -1.321 0.18978

Residual standard error: 9.267 on 91 degrees of freedom

Multiple R-squared: 0.08955, Adjusted R-squared: 0.05954

F-statistic: 2.984 on 3 and 91 DF, p-value: 0.03537
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Interpretation

Interaction
Sex does not significantly influence the effect of tangible satisfactionratings on depression levels (𝛽 = −0.95, t[91] = −1.32, p = 0.19).
• In other words, there is not significant a difference between malesand females in the way that tangible satisfaction ratings affectdepression levels.
• In this sample, the effect of tangible satisfaction ratings ondepression is 0.95 units lower for males than for females.
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Interpretation

Conditional Effects
There is not a significant effect of tangible satisfaction ratings ondepression levels for females (𝛽 = −0.58, t[91] = −1.6, p = 0.114).
• For females in this sample, each additional point of rated tangiblesatisfaction produces a change of -0.58 units in expected depressionlevel.

There is not a significant conditional effect of sex on depression levels,when tangible satisfaction rating is zero (𝛽 = 14.37, t[91] = 1.18,
p = 0.242).
• In this sample, males with zero tangible satisfaction have 14.37 higherdepression levels than females with zero tangible satisfaction.
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Interpretation

Intercept
The expected depression level for females with a zero tangiblesatisfaction rating is 20.85.
Model Fit
Sex, tangible satisfaction rating, and their interaction explainapproximately 9% of the variability in depression levels.
• This proportion of explained variability is significantly greater thanzero (F[3,91] = 2.98, p = 0.035).
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Visualizing Categorical Moderation
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