Introduction to Linear Modeling

Fundamental Techniques in Data Science with R

Kyle M. Lang

Utrecht University

Outline

Simple Linear Regression
Model Fit
Multiple Linear Regression
Model Comparison
Categorical Predictors
Significance Testing for Dummy Codes
Model-Based Prediction
Interval Estimates for Prediction
Moderation
Categorical Moderators

Visualizations of Simple Linear Regression

Simple Linear Regression Equation

The best fit line is defined by a simple equation:

$$
\hat{Y}=\hat{\beta}_{0}+\hat{\beta}_{1} X
$$

The above should look very familiar:

$$
\begin{aligned}
Y & =m X+b \\
& =\hat{\beta}_{1} X+\hat{\beta}_{0}
\end{aligned}
$$

$\hat{\beta}_{0}$ is the intercept.

- The \hat{Y} value when $X=0$.
- The expected value of Y when $X=0$.
$\hat{\beta}_{1}$ is the slope.
- The change in \hat{Y} for a unit change in X.
- The expected change in Y for a unit change in X.

Thinking about Error

The equation $\hat{Y}=\hat{\beta}_{0}+\hat{\beta}_{1} X$ only describes the best fit line.

- It does not fully quantify the relationship between Y and X.

Thinking about Error

The equation $\hat{Y}=\hat{\beta}_{0}+\hat{\beta}_{1} X$ only describes the best fit line.

- It does not fully quantify the relationship between Y and X.

We still need to account for the estimation error.

$$
Y=\hat{\beta}_{0}+\hat{\beta}_{1} X+\hat{\varepsilon}
$$

Estimating the Regression Coefficients

The purpose of regression analysis is to use a sample of N observed $\left\{Y_{n}, X_{n}\right\}$ pairs to find the best fit line defined by $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$.

- The most popular method of finding the best fit line involves minimizing the sum of the squared residuals.
- $R S S=\sum_{n=1}^{N} \hat{\varepsilon}_{n}^{2}$

Residuals as the Basis of Estimation

The $\hat{\varepsilon}_{n}$ are defined in terms of deviations between each observed Y_{n} value and the corresponding \hat{Y}_{n}.

$$
\hat{\varepsilon}_{n}=Y_{n}-\hat{Y}_{n}=Y_{n}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} X_{n}\right)
$$

Each $\hat{\varepsilon}_{n}$ is squared before summing to remove negative values.

$$
\begin{aligned}
R S S & =\sum_{n=1}^{N} \hat{\varepsilon}_{n}^{2}=\sum_{n=1}^{N}\left(Y_{n}-\hat{Y}_{n}\right)^{2} \\
& =\sum_{n=1}^{N}\left(Y_{n}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{n}\right)^{2}
\end{aligned}
$$

Least Squares Example

Estimate the least squares coefficients for our example data:

```
data(Cars93, package = "MASS")
out1 <- lm(Horsepower ~ Price, data = Cars93)
coef(out1)
\begin{tabular}{rr} 
(Intercept) & Price \\
60.447578 & 4.273796
\end{tabular}
```

The estimated intercept is $\hat{\beta}_{0}=60.45$.

- A free car is expected to have 60.45 horsepower.

The estimated slope is: $\hat{\beta}_{1}=4.27$.

- For every additional $\$ 1000$ in price, a car is expected to gain 4.27 horsepower.

Model Fit

We may also want to know how well our model explains the outcome.

- Our model explains some proportion of the outcome's variability.
- The residual variance $\hat{\sigma}^{2}=\operatorname{Var}(\hat{\varepsilon})$ will be less than $\operatorname{Var}(Y)$.

Model Fit

We may also want to know how well our model explains the outcome.

- Our model explains some proportion of the outcome's variability.
- The residual variance $\hat{\sigma}^{2}=\operatorname{Var}(\hat{\varepsilon})$ will be less than $\operatorname{Var}(Y)$.

Model Fit

We quantify the proportion of the outcome's variance that is explained by our model using the R^{2} statistic:

$$
R^{2}=\frac{T S S-R S S}{T S S}=1-\frac{R S S}{T S S}
$$

where

$$
T S S=\sum_{n=1}^{N}\left(Y_{n}-\bar{Y}\right)^{2}=\operatorname{Var}(Y) \times(N-1)
$$

For our example problem, we get:

$$
R^{2}=1-\frac{95573}{252363} \approx 0.62
$$

Indicating that car price explains 62% of the variability in horsepower.

Model Fit for Prediction

When assessing predictive performance, we will most often use the mean squared error (MSE) as our criterion.

$$
\begin{aligned}
\text { MSE } & =\frac{1}{N} \sum_{n=1}^{N}\left(Y_{n}-\hat{Y}_{n}\right)^{2} \\
& =\frac{1}{N} \sum_{n=1}^{N}\left(Y_{n}-\hat{\beta}_{0}-\sum_{p=1}^{P} \hat{\beta}_{p} X_{n p}\right)^{2} \\
& =\frac{R S S}{N}
\end{aligned}
$$

For our example problem, we get:

$$
M S E=\frac{95573}{93} \approx 1027.67
$$

Interpreting MSE

The MSE quantifies the average squared prediction error.

- Taking the square root improves interpretation.

$$
R M S E=\sqrt{M S E}
$$

The RMSE estimates the magnitude of the expected prediction error.

- For our example problem, we get:

$$
R M S E=\sqrt{\frac{95573}{93}} \approx 32.06
$$

- When using price as the only predictor of horsepower, we expect prediction errors with magnitudes of 32.06 horsepower.

Information Criteria

We can use information criteria to quickly compare non-nested models while accounting for model complexity.

- Akaike's Information Criterion (AIC)

$$
A I C=2 K-2 \hat{\ell}(\theta \mid X)
$$

- Bayesian Information Criterion (BIC)

$$
B I C=K \ln (N)-2 \hat{\ell}(\theta \mid X)
$$

Information Criteria

We can use information criteria to quickly compare non-nested models while accounting for model complexity.

- Akaike's Information Criterion (AIC)

$$
A I C=2 K-2 \hat{\ell}(\theta \mid X)
$$

- Bayesian Information Criterion (BIC)

$$
B I C=K \ln (N)-2 \hat{\ell}(\theta \mid X)
$$

Information criteria balance two competing forces.

- The optimized loglikelihood quantifies fit to the data.
- The penalty term corrects for model complexity.

Information Criteria

For our example, we get the following estimates of AIC and BIC:

$$
\begin{aligned}
\text { AIC } & =2(3)-2(-454.44) \\
& =914.88 \\
\text { BIC } & =3 \ln (93)-2(-454.44) \\
& =922.48
\end{aligned}
$$

To compute the AIC/BIC from a fitted $\operatorname{lm}()$ object in R:

```
AIC(out1)
[1] 914.8821
BIC(out1)
[1] 922.4799
```


MULTIPLE LINEAR REGRESSION

Graphical Representations

Adding an additional predictor to a simple linear regression problem leads to a 3D point cloud.

- A regression model with two IVs implies a 2D plane in 3D space.

Partial Effects

In MLR, we want to examine the partial effects of the predictors.

- What is the effect of a predictor after controlling for some other set of variables?

This approach is crucial to controlling confounds and adequately modeling real-world phenomena.

Example

```
## Read in the 'diabetes' dataset:
dDat <- readRDS("../data/diabetes.rds")
## Simple regression with which we're familiar:
out1 <- lm(bp ~ age, data = dDat)
```

ASKING: What is the effect of age on average blood pressure?

```
## Add in another predictor:
out2 <- lm(bp ~ age + bmi, data = dDat)
```

ASKING: What is the effect of BMI on average blood pressure, after controlling for age?

- We're partialing age out of the effect of BMI on blood pressure.

Example

```
partSummary(out2, -1)
Residuals:
Min 1Q Median 3Q Max
-29.287 -8.198 -0.178 8.413 41.026
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 52.24654 3.83168 13.635 < 2e-16
age 0.28651 0.04504 6.362 5.02e-10
bmi 1.08053 0.13363 8.086 6.06e-15
Residual standard error: 12.18 on 439 degrees of freedom
Multiple R-squared: 0.2276,Adjusted R-squared: 0.224
F-statistic: 64.66 on 2 and 439 DF, p-value: < 2.2e-16
```


Interpretation

- The expected average blood pressure for an unborn patient with a negligible extent is 52.25 .
- For each year older, average blood pressure is expected to increase by 0.29 points, after controlling for BMI.
- For each additional point of BMI, average blood pressure is
 expected to increase by 1.08 points, after controlling for age.

Multiple R ${ }^{2}$

How much variation in blood pressure is explained by the two models?

- Check the R^{2} values.

```
## Extract R^2 values:
r2.1 <- summary(out1)$r.squared
r2.2 <- summary(out2)$r.squared
r2.1
[1] 0.1125117
r2.2
[1] 0.2275606
```


F-Statistic

How do we know if the R^{2} values are significantly greater than zero?

- We use the F-statistic to test $H_{0}: R^{2}=0$ vs. $H_{1}: R^{2}>0$.

```
f1 <- summary(out1)$fstatistic
f1
\begin{tabular}{rrr} 
value & numdf & dendf \\
55.78116 & 1.00000 & 440.00000
\end{tabular}
pf(q = f1[1], df1 = f1[2], df2 = f1[3], lower.tail = FALSE)
    value
4.392569e-13
```


F-Statistic

```
f2 <- summary(out2)$fstatistic
f2
    value numdf dendf
    64.6647 2.0000 439.0000
pf(f2[1], f2[2], f2[3], lower.tail = FALSE)
    value
2.433518e-25
```


Comparing Models

How do we quantify the additional variation explained by BMI, above and beyond age?

- Compute the ΔR^{2}

```
## Compute change in R^2:
r2.2 - r2.1
[1] 0.115049
```


Significance Testing

How do we know if ΔR^{2} represents a significantly greater degree of explained variation?

- Use an F-test for $H_{0}: \Delta R^{2}=0$ vs. $H_{1}: \Delta R^{2}>0$

```
## Is that increase significantly greater than zero?
anova(out1, out2)
Analysis of Variance Table
Model 1: bp ~ age
Model 2: bp ~ age + bmi
    Res.Df RSS Df Sum of Sq F Pr (>F)
144074873
2 439 65167 1 9706.1 65.386 6.057e-15 ***
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Comparing Models

We can also compare models based on their prediction errors.

- For OLS regression, we usually compare MSE values.

```
mse1 <- MSE(y_pred = predict(out1), y_true = dDat$bp)
mse2 <- MSE(y_pred = predict(out2), y_true = dDat$bp)
mse1
[1] 169.3963
mse2
[1] 147.4367
```

In this case, the MSE for the model with BMI included is smaller.

- We should prefer the the larger model.

Comparing Models

Finally, we can compare models based on information criteria.

```
AIC(out1, out2)
    df AIC
out1 3 3528.792
out2 4 3469.424
BIC(out1, out2)
\begin{tabular}{lrr} 
& df & BIC \\
out1 & 3 & 3541.066 \\
out2 & 4 & 3485.789
\end{tabular}
```

In this case, both the AIC and the BIC for the model with BMI included are smaller.

- We should prefer the the larger model.

CATEGORICAL PREDICTORS

Dummy Coding

The most common way to code categorical predictors is dummy coding.

- A G-level factor must be converted into a set of G-1 dummy codes.
- Each code is a variable on the dataset that equals 1 for observations corresponding to the code's group and equals 0 , otherwise.
- The group without a code is called the reference group.

Example Dummy Code

Let's look at the simple example of coding biological sex:

	sex	male
1	female	0
2	male	1
3	male	1
4	female	0
5	male	1
6	female	0
7	female	0
8	male	1
9	female	0
10	female	0

Example Dummy Codes

Now, a slightly more complex example:

	drink	juice	tea
1	juice	1	0
2	coffee	0	0
3	tea	0	1
4	tea	0	1
5	tea	0	1
6	tea	0	1
7	juice	1	0
8	tea	0	1
9	coffee	0	0
10	juice	1	0

Using Dummy Codes

To use the dummy codes, we simply include the $G-1$ codes as $G-1$ predictor variables in our regression model.

$$
\begin{aligned}
& Y=\beta_{0}+\beta_{1} X_{\text {male }}+\varepsilon \\
& Y=\beta_{0}+\beta_{1} X_{\text {juice }}+\beta_{2} X_{\text {tea }}+\varepsilon
\end{aligned}
$$

- The intercept corresponds to the mean of Y for the reference group.
- Each slope represents the difference between the mean of Y in the coded group and the mean of Y in the reference group.

Example

```
## Load some data:
data(Cars93, package = "MASS")
## Use a nominal predictor:
out3 <- lm(Price ~ DriveTrain, data = Cars93)
partSummary(out3, -1)
```

Residuals:

Min	$1 Q$	Median	3Q	Max
-14.050	-6.250	-1.236	3.264	32.950

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) $17.63000 \quad 2.76119 \quad 6.3857 .33 \mathrm{e}-09$
DriveTrainFront -0.09418 2.96008 -0.032 0.97469
$\begin{array}{lllll}\text { DriveTrainRear } & 11.32000 & 3.51984 & 3.216 & 0.00181\end{array}$

Residual standard error: 8.732 on 90 degrees of freedom Multiple R-squared: 0.2006,Adjusted R-squared: 0.1829 F-statistic: 11.29 on 2 and 90 DF, p-value: $4.202 \mathrm{e}-05$

Interpretations

- The average price of a four-wheel-drive car is $\hat{\beta}_{0}=17.63$ thousand dollars.
- The average difference in price between front-wheel-drive cars and four-wheel-drive cars is $\hat{\beta}_{1}=-0.09$ thousand dollars.
- The average difference in price between rear-wheel-drive cars and four-wheel-drive cars is $\hat{\beta}_{2}=11.32$ thousand dollars.

Example

Include two sets of dummy codes:

```
out4 <- lm(Price ~ Man.trans.avail + DriveTrain, data = Cars93)
partSummary(out4, -c(1, 2))
Coefficients:
\begin{tabular}{lrrrr} 
(Intercept) & 21.7187 & 2.9222 & 7.432 & \(6.25 e-11\) \\
Man.trans.availYes & -5.8410 & 1.8223 & -3.205 & 0.00187 \\
DriveTrainFront & -0.2598 & 2.8189 & -0.092 & 0.92677 \\
DriveTrainRear & 10.5169 & 3.3608 & 3.129 & 0.00237
\end{tabular}
Residual standard error: 8.314 on 89 degrees of freedom Multiple R-squared: 0.2834,Adjusted R-squared: 0.2592
F-statistic: 11.73 on 3 and 89 DF, p-value: 1.51e-06
```


Interpretations

- The average price of a four-wheel-drive car that does not have a manual transmission option is $\hat{\beta}_{0}=21.72$ thousand dollars.
- After controlling for drive type, the average difference in price between cars that have manual transmissions as an option and those that do not is $\hat{\beta}_{1}=-5.84$ thousand dollars.
- After controlling for transmission options, the average difference in price between front-wheel-drive cars and four-wheel-drive cars is $\hat{\beta}_{2}=-0.26$ thousand dollars.
- After controlling for transmission options, the average difference in price between rear-wheel-drive cars and four-wheel-drive cars is $\hat{\beta}_{3}=10.52$ thousand dollars.

Contrasts

All R factors have an associated contrasts attribute.

- The contrasts define a coding to represent the grouping information.
- Modeling functions code the factors using the rules defined by the contrasts.


```
contrasts(Cars93$DriveTrain)
\begin{tabular}{lrr} 
& Front & Rear \\
4WD & 0 & 0 \\
Front & 1 & 0 \\
Rear & 0 & 1
\end{tabular}
```


Significance Testing

For variables with only two levels, we can test the overall factor's significance by evaluating the significance of a single dummy code.

```
out <- lm(Price ~ Man.trans.avail, data = Cars93)
partSummary(out, -c(1, 2))
Coefficients:
\begin{tabular}{lllll} 
(Intercept) & 23.841 & 1.623 & 14.691 & \(<2 \mathrm{e}-16\) \\
Man.trans.availYes & -6.603 & 2.004 & -3.295 & 0.0014
\end{tabular}
Residual standard error: 9.18 on 91 degrees of freedom
Multiple R-squared: 0.1066,Adjusted R-squared: 0.09679
F-statistic: 10.86 on 1 and 91 DF, p-value: 0.001403
```


Significance Testing

For variables with more than two levels, we need to simultaneously evaluate the significance of each of the variable's dummy codes.

```
partSummary(out4, -c(1, 2))
Coefficients:
    Estimate Std. Error t value Pr (>|t|)
(Intercept) 21.7187 2.9222 7.432 6.25e-11
Man.trans.availYes -5.8410 1.8223 -3.205 0.00187
DriveTrainFront -0.2598 2.8189 -0.092 0.92677
DriveTrainRear 10.5169 3.3608 3.129 0.00237
Residual standard error: 8.314 on 89 degrees of freedom
Multiple R-squared: 0.2834,Adjusted R-squared: 0.2592
F-statistic: 11.73 on 3 and 89 DF, p-value: 1.51e-06
```


Significance Testing

```
summary(out4)$r.squared - summary(out)$r.squared
[1] 0.1767569
anova(out, out4)
Analysis of Variance Table
Model 1: Price ~ Man.trans.avail
Model 2: Price ~ Man.trans.avail + DriveTrain
    Res.Df RSS Df Sum of Sq F Pr (>F)
1 91 7668.9
2 89 6151.6 2 1517.3 10.976 5.488e-05 ***
Signif. codes:
O '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Significance Testing

For models with a single nominal factor is the only predictor, we use the omnibus F-test.

```
partSummary(out3, -c(1, 2))
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 17.63000 2.76119 6.385 7.33e-09
DriveTrainFront -0.09418 2.96008 -0.032 0.97469
DriveTrainRear 11.32000 3.51984 3.216 0.00181
Residual standard error: 8.732 on 90 degrees of freedom
Multiple R-squared: 0.2006,Adjusted R-squared: 0.1829
F-statistic: 11.29 on 2 and 90 DF, p-value: 4.202e-05
```


MODEL-BASED PREDICTION

Prediction Example

To fix ideas, let's reconsider the diabetes data and the following model:

$$
Y_{L D L}=\beta_{0}+\beta_{1} X_{B P}+\beta_{2} X_{\text {gluc }}+\beta_{3} X_{B M I}+\varepsilon
$$

Training this model on the first $N=400$ patients' data produces the following fitted model:

$$
\hat{Y}_{L D L}=22.135+0.089 X_{B P}+0.498 X_{\text {gluc }}+1.48 X_{B M I}
$$

Prediction Example

To fix ideas, let's reconsider the diabetes data and the following model:

$$
Y_{L D L}=\beta_{0}+\beta_{1} X_{B P}+\beta_{2} X_{\text {gluc }}+\beta_{3} X_{B M I}+\varepsilon
$$

Training this model on the first $N=400$ patients' data produces the following fitted model:

$$
\hat{Y}_{L D L}=22.135+0.089 X_{B P}+0.498 X_{\text {gluc }}+1.48 X_{B M I}
$$

Suppose a new patient presents with $B P=121$, gluc $=89$, and $B M I=$ 30.6. We can predict their $L D L$ score by:

$$
\begin{aligned}
\hat{Y}_{L D L} & =22.135+0.089(121)+0.498(89)+1.48(30.6) \\
& =122.463
\end{aligned}
$$

Interval Estimates for Prediction

To quantify uncertainty in our predictions, we want to use an appropriate interval estimate.

- Two flavors of interval are applicable to predictions:

1. Confidence intervals for \hat{Y}_{m}
2. Prediction intervals for a specific observation, Y_{m}

- The Cl for \hat{Y}_{m} gives a likely range (in the sense of coverage probability and "confidence") for the m th value of the true conditional mean.
- Cls only account for uncertainty in the estimated regression coefficients, $\left\{\hat{\beta}_{0}, \hat{\beta}_{p}\right\}$.
- The prediction interval for Y_{m} gives a likely range (in the same sense as Cls) for the m th outcome value.
- Prediction intervals also account for the regression errors, ε.

Confidence vs. Prediction Intervals

Let's visualize the predictions from a simple model:

$$
Y_{B P}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{B M I}+\hat{\varepsilon}
$$

Confidence vs. Prediction Intervals

Let's visualize the predictions from a simple model:

$$
Y_{B P}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{B M I}+\hat{\varepsilon}
$$

- Cls for \hat{Y} ignore the errors, ε.
- They only care about the best-fit line, $\beta_{0}+\beta_{1} X_{\text {BMI }}$.

Confidence vs. Prediction Intervals

Let's visualize the predictions from a simple model:

$$
Y_{B P}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{B M I}+\hat{\varepsilon}
$$

- Cls for \hat{Y} ignore the errors, ε.
- They only care about the best-fit line, $\beta_{0}+\beta_{1} X_{\text {BMI }}$.
- Prediction intervals are wider than Cls.
- They account for the additional uncertainty contributed by ε.

Interval Estimates Example

Going back to our hypothetical "new" patient, we get the following 95\% interval estimates:

$$
\begin{aligned}
95 \% C I_{\hat{Y}} & =[115.6 ; 129.33] \\
95 \% P I & =[66.56 ; 178.37]
\end{aligned}
$$

- We can be 95% confident that the average LDL of patients with Glucose $=89, B P=121$, and $B M I=30.6$ will be somewhere between 115.6 and 129.33.
- We can be 95% confident that the $L D L$ of a specific patient with Glucose $=89, B P=121$, and $B M I=30.6$ will be somewhere between 66.56 and 178.37.

MODERATION

Moderation

So far we've been discussing additive models.

- Additive models allow us to examine the partial effects of several predictors on some outcome.
- The effect of one predictor does not change based on the values of other predictors.

Now, we'll discuss moderation.

- Moderation allows us to ask when one variable, X, affects another variable, Y.
- We're considering the conditional effects of X on Y given certain levels of a third variable Z.

Equations

In additive MLR, we might have the following equation:

$$
Y=\beta_{0}+\beta_{1} X+\beta_{2} Z+\varepsilon
$$

This equation assumes that X and Z are independent predictors of Y.
When X and Z are independent predictors, the following are true:

- X and Z can be correlated.
- β_{1} and β_{2} are partial regression coefficients.
- The effect of X on Y is the same at all levels of Z, and the effect of Z on Y is the same at all levels of X.

Additive Regression

The effect of X on Y is the same at all levels of Z.

Moderated Regression

The effect of X on Y varies as a function of Z.

Equations

The following derivation is adapted from Hayes (2017).

- When testing moderation, we hypothesize that the effect of X on Y varies as a function of Z.
- We can represent this concept with the following equation:

$$
\begin{equation*}
Y=\beta_{0}+f(Z) X+\beta_{2} Z+\varepsilon \tag{1}
\end{equation*}
$$

Equations

The following derivation is adapted from Hayes (2017).

- When testing moderation, we hypothesize that the effect of X on Y varies as a function of Z.
- We can represent this concept with the following equation:

$$
\begin{equation*}
Y=\beta_{0}+f(Z) X+\beta_{2} Z+\varepsilon \tag{1}
\end{equation*}
$$

- If we assume that Z linearly (and deterministically) affects the relationship between X and Y, then we can take:

$$
\begin{equation*}
f(Z)=\beta_{1}+\beta_{3} Z \tag{2}
\end{equation*}
$$

Equations

- Substituting Equation 2 into Equation 1 leads to:

$$
Y=\beta_{0}+\left(\beta_{1}+\beta_{3} Z\right) X+\beta_{2} Z+\varepsilon
$$

Equations

- Substituting Equation 2 into Equation 1 leads to:

$$
Y=\beta_{0}+\left(\beta_{1}+\beta_{3} Z\right) X+\beta_{2} Z+\varepsilon
$$

- Which, after distributing X and reordering terms, becomes:

$$
Y=\beta_{0}+\beta_{1} X+\beta_{2} Z+\beta_{3} X Z+\varepsilon
$$

Testing Moderation

Now, we have an estimable regression model that quantifies the linear moderation we hypothesized.

$$
Y=\beta_{0}+\beta_{1} X+\beta_{2} Z+\beta_{3} X Z+\varepsilon
$$

- To test for significant moderation, we simply need to test the significance of the interaction term, $X Z$.
- Check if $\hat{\beta}_{3}$ is significantly different from zero.

Interpretation

Given the following equation:

$$
Y=\hat{\beta}_{0}+\hat{\beta}_{1} X+\hat{\beta}_{2} Z+\hat{\beta}_{3} X Z+\hat{\varepsilon}
$$

- $\hat{\beta}_{3}$ quantifies the effect of Z on the focal effect (the $X \rightarrow Y$ effect).
- For a unit change in $Z, \hat{\beta}_{3}$ is the expected change in the effect of X on Y.
- $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ are conditional effects.
- Interpreted where the other predictor is zero.
- For a unit change in $X, \hat{\beta}_{1}$ is the expected change in Y, when $Z=0$.
- For a unit change in $Z, \hat{\beta}_{2}$ is the expected change in Y, when $X=0$.

Example

Still looking at the diabetes dataset.

- We suspect that patients' BMIs are predictive of their average blood pressure.
- We further suspect that this effect may be differentially expressed depending on the patients' LDL levels.

Example

```
out <- lm(bp ~ bmi * ldl, data = dDat)
partSummary(out, -c(1, 2))
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.480616 14.291677 1.013 0.311514
bmi 2.867825 0.541312 5.298 1.86e-07
ldl 0.448771 0.127160 3.529 0.000461
bmi:ldl -0.015352 0.004716 -3.255 0.001221
Residual standard error: 12.54 on 438 degrees of freedom
Multiple R-squared: 0.1834,Adjusted R-squared: 0.1778
F-statistic: 32.78 on 3 and 438 DF, p-value: < 2.2e-16
```


Visualizing the Interaction

We can get a better idea of the patterns of moderation by plotting the focal effect at conditional values of the moderator.

```
library(rockchalk)
plotSlopes(out,
    plotx = "bmi",
    modx = "ldl",
    modxVals = "std.dev")
```


Categorical Moderators

Categorical moderators encode group-specific effects.

- E.g., if we include sex as a moderator, we are modeling separate focal effects for males and females.

Given a set of codes representing our moderator, we specify the interactions as before:

$$
\begin{aligned}
Y_{\text {total }} & =\beta_{0}+\beta_{1} X_{\text {inten }}+\beta_{2} Z_{\text {male }}+\beta_{3} X_{\text {inten }} Z_{\text {male }}+\varepsilon \\
Y_{\text {total }} & =\beta_{0}+\beta_{1} X_{\text {inten }}+\beta_{2} Z_{\text {lo }}+\beta_{3} Z_{\text {mid }}+\beta_{4} Z_{h i} \\
& +\beta_{5} X_{\text {inten }} Z_{l o}+\beta_{6} X_{\text {inten }} Z_{\text {mid }}+\beta_{7} X_{\text {inten }} Z_{h i}+\varepsilon
\end{aligned}
$$

Example

```
## Load data:
socSup <- readRDS(paste0(dataDir, "social_support.rds"))
## Estimate the moderated regression model:
out <- lm(bdi ~ tanSat * sex, data = socSup)
partSummary(out, -c(1, 2))
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 20.8478 6.2114 3.356 0.00115
tanSat -0.5772 0.3614 -1.597 0.11372
sexmale 14.3667 12.2054 1.177 0.24223
tanSat:sexmale -0.9482 0.7177 -1.321 0.18978
Residual standard error: 9.267 on 91 degrees of freedom
Multiple R-squared: 0.08955,Adjusted R-squared: 0.05954
F-statistic: 2.984 on 3 and 91 DF, p-value: 0.03537
```


Visualizing Categorical Moderation

$$
\begin{aligned}
\hat{Y}_{\text {BDI }} & =20.85-0.58 X_{\text {tsat }}+14.37 Z_{\text {male }} \\
& =0.95 X_{\text {tsat }} Z_{\text {male }}
\end{aligned}
$$

Moderation by Gender

$\hat{Y}_{\text {BDI }}=28.10-1.00 X_{\text {tsat }}-1.05 Z_{\text {male }}$

Additive Gender Effect

References

Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York: Guilford Press.

