R Basics

Fundamental Techniques in Data Science

Kyle M. Lang
‘&‘Wfé Utrecht
NI

% Department of Methodology & Statistics

%A!\‘kh UniverSity Utrecht University

Outline

The R Statistical Programming Language
Data I/0
Functions

Iteration

20156 [

Attribution

This course was originally developed by Gerko Vink. You can access the
original version of these materials on Dr. Vink's GitHub page:
https://github.com/gerkovink/fundamentals. The course materials

have been (extensively) modified. Any errors or inaccuracies introduced
via these modifications are fully my own responsibility and shall not be
taken as representing the views and/or beliefs of Dr. Vink. You can see

Gerko's version of the course on his personal website:
https://www.gerkovink.com/fundamentals.

30156 [

https://github.com/gerkovink/fundamentals
https://www.gerkovink.com/fundamentals

What is “Open-Source”?

R is an open-source software project, but what does that mean?

e Source code is freely available to anyone who wants it.

o Free Speech, not necessarily Free Beer
e Anyone can edit the original source code to suit their needs.
o Ego-less programming

e Many open source programs are also “freeware” that are available
free of charge.

o Ris both open-source and freeware

aofse [

What is R?

| prefer to think about R as a statistical programming language, rather
than as a data analysis program.

e RIS NOT its GUI (no matter which GUI you use).

e You can write R code in whatever program you like (e.g., RStudio,
EMACS, VIM, Notepad, directly in the console/shell/command line).

¢ R can be used for basic (or advanced) data analysis, but its real
strength is its flexible programming framework.
o Tedious tasks can be automated.
o Computationally demanding jobs can be run in parallel.
o R-based research wants to be reproducible.
o Analyses are automatically documented via their scripts.

5056 [

What is RStudio?

RStudio is an integrated development environment (IDE) for R.
e Adds a bunch of window dressing to R
e Also open-source

¢ Both free and paid versions

R and RStudio are independent entities.
¢ You do not need RStudio to work with R.

¢ You are analyzing your data with R, not RStudio
o RStudio is just the interface through which you interact with R.

6055 [

Getting R

You can download R, for free, from the following web page:
e https://www.r-project.org/
Likewise, you can freely download RStudio via the following page:

e https://posit.co/downloads/

7056 [

https://www.r-project.org/
https://posit.co/downloads/

How R Works

Ris an interpreted programming language.

e The commands you enter into the R Console are executed
immediately.

¢ You don't need to compile your code before running it.

e In this sense, interacting with R is similar to interacting with other
syntax-based statistical packages (e.g., SAS, STATA, Mplus).

8 of 56

Interacting with R

When working with R, you will write scripts that contain all of the
commands you want to execute.

e There is no “clicky-box” Tom-foolery in R.

e Your script can be run interactively or in “batch-mode”, as a
self-contained program.

The primary purpose of the commands in your script will be to create
and modify various objects (e.g., datasets, variables, function calls,
graphical devices).

9055 [

Getting Help

Everything published on the Comprehensive R Archive Network (CRAN),
and intended for R users, must be accompanied by a help file.

e If you know the name of the function (e.g., anova()), then execute

?anova Or help(anova)

¢ If you do not know the name of the function, type 7?7 followed by
your search criterion.

o For example, ??7anova returns a list of all help pages that contain the
word "anova”.

The internet can also tell you almost everything you'd like to know.

e Sites such as http://www.stackoverflow.com and
http://www.stackexchange.com can be very helpful.

e If you google R-related issues, include "R” somewhere in your search
string.

100156 [

5

http://www.stackoverflow.com
http://www.stackexchange.com

Packages

Packages give R additional functionality.
¢ By default, some packages are included when you install R.

¢ These packages allow you to do common statistical analyses and data
manipulation.

¢ Installing additional packages allows you to perform state-of-the-art
statistical analyses.

110f56 [

Packages

These packages are all developed by R users, so the throughput process
is very timely.

¢ Newly developed functions and software are readily available

¢ Software implementations of new methods can be quickly
disseminated

e This efficiency differs from other mainstream software (e.g., SPSS,
SAS, MPlus) where new methodology may take years to be
implemented.

A list of available packages can be found on CRAN.

120156 [

https://cran.r-project.org

Installing & Loading Packages

Install a package (e.g., mice):
install.packages("mice")
There are two ways to load a package into R

library(stats)
require(stats)

130156 [

Project Management

Getting a handle on three key concepts will dramatically improve your
data analytic life.

1. Working directories
2. Directory structures and file paths

3. RStudio projects

140156 [

DATA I/O

R Data & Workspaces

R has two native data formats.

Load the butilt-in 'bft' data from the 'psychTools' package
data(bfi, package = "psychTools")

Access the documentation for the 'bfi' data
?psychTools: :bfi

Define the directory holding our data
dataDir <- "../../../data/"

Load the 'boys' data from the R workspace
'../../../data/boys.RData’
load (pasteO(dataDir, "boys.RData"))

Load the 'titanic' data stored in R data set
'../../../data/titanic.rds’
titanic <- readRDS(pasteO(dataDir, "titanic.rds"))

16.0f56 [

Delimited Data Types

Load the 'diabetes' data from the tab-delimited file
#4 '../../../data/diabetes. tat'’
diabetes <- read.table(pasteO(dataDir, "diabetes.txt"),
header = TRUE,
sep = "\t")

Load the 2017 UTMB data from the comma-separated file
'../../../data/utmb_2017.csv'
utmbl <- read.csv(pasteO(dataDir, "utmb_2017.csv"))

NOTES:

e The read.csv() function assumes the values are separated by
commas.

e For EU-formatted CSV files—with values delimited by semicolons—we
can use the read.csv2() function.

170156 [

SPSS Data

Reading data in from other stats packages can be a bit tricky. If we want
to read SAV files, there are two popular options:

e foreign::read.spss()

* haven::read_spss()

Load the foreign package:
library(foreign)

Use foreign::read.spss() to read '../../../data/mtcars.sav’' into a list
mtcarsl <- read.spss(pasteO(dataDir, "mtcars.sav"))

Read '../../../data/mtcars.sav’' as a data frame
mtcars2 <- read.spss(pasteO(dataDir, "mtcars.sav"), to.data.frame = TRUE)

Read '../../../data/mtcars.sav’' without value labels

mtcars3 <- read.spss(pasteO(dataDir, "mtcars.sav"),
to.data.frame = TRUE,
use.value.labels = FALSE)

18 0f 56 [

5

SPSS Data

View the results:
mtcarsi[1:3]

$mpg

[1] 21.0 21.0
[12] 16.4 17.3
[23] 15.2 13.3
$cyl

[11 6 6 468
[29] 8 6 8 4
$disp

[1] 160.0 160.
[10] 167.6 167.
[19] 75.7 T71.
[28] 95.1 351.

19 of 56

22.8 21.4 18.7 18.
15.2 10.4 10.4 14.
19.2 27.3 26.0 30

684466888

0 108.0 258.0 360.
6 275.8 275.8 275.
1 120.1 318.0 304.
0 145.0 301.0 121.

N e

8

e

22.8 19.
33.9 21.
15.0 21.

= W

a1 N
0 B W
= W N
© O
~N DD

884444888

225.0 360.0 146.7
472.0 460.0 440.0
350.0 400.0 79.0

& 0N
=
(SN
[$20e0)

8444

140.8
78.7
120.3

SPSS Data

head (mtcars2)
mpg cyl disp

121.0 6 160

221.0 6 160

322.8 4 108

421.4 6 258

5 18.7 8 360

6 18.1 6 225
gear carb

1 4 4

2 4 4

3 4 1

4 3 1

5 3 2

6 3 1

20 of 56

hp
110
110

93
110
175
105

drat
.90
.90
.85
.08
.15
.76

N W wwww

W wwNNN

wt

.620
.875
.320
.215
.440
.460

gsec

16.
17.
18.
flIOp
17.
20.

46
02
61
44
02
22

vs am
V-Shaped Manual
V-Shaped Manual
Straight Manual
Straight Automatic

V-Shaped Automatic
Straight Automatic

SPSS Data

head (mtcars3)
mpg cyl disp
121.0 6 160
221.0 6 160
322.8 4 108
4 21.4 6 258
5 18.7 8 360
6 18.1 6 225

21 of 56

hp
110
110

93
110
175
105

drat

N W wWwwww

.90
.90
.85
.08
.15
.76

W wwNNDN

wt
.620
.875
.320
.215
.440
.460

gsec vs am gear carb

16.
17.
18.
1198
17.
20.

46
02
61
44
02
22

0

= O =B, Bk O

O O O - =

4

W w w s

=N R RN

SPSS Data

Load the packages:
library (haven)
library(labelled)

Use haven::read_spss() to read '../../../data/mtcars.sav’' into a tibble
mtcars4 <- read_spss(pasteO(dataDir, "mtcars.sav"))

head (mtcars4)

A tibble: 6 x 11
mpg cyl disp hp drat wt gsec vs am
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl+1lb> <dbl+1>

1 21 6 160 110 3.9 2.62 16.5 0 [V-Sh~ 1 [Man~
2 21 6 160 110 3.9 2.88 17.0 0 [V-Sh~ 1 [Man~
3 22.8 4 108 93 3.85 2.32 18.6 1 [Stra™ 1 [Man”
4 21.4 6 258 110 3.08 3.22 19.4 1 [Stra~ O [Aut”
5 18.7 8 360 175 3.15 3.44 17.0 0 [V-Sh~™ O [Aut”
6 18.1 6 225 105 2.76 3.46 20.2 1 [Stra~ O [Aut”
i 2 more variables: gear <dbl>, carb <dbl>
220f56 [

5

SPSS Data

haven: :read_spss() converts any SPSS variables with labels into
labelled vectors.

e We can use the labelled::unlabelled() function to remove the
value labels.

mtcars5 <- unlabelled(mtcars4)

head (mtcars5)

A tibble: 6 x 11
mpg cyl disp hp drat wt gsec vs am
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <fct>

1 21 6 160 110 3.9 2.62 16.5 V-Shaped Manual
2 21 6 160 110 3.9 2.88 17.0 V-Shaped Manual
3 22.8 4 108 93 3.85 2.32 18.6 Straight Manual
4 21.4 6 2568 110 3.08 3.22 19.4 Straight Automa~
5 18.7 8 360 176 3.15 3.44 17.0 V-Shaped Automa™
6 18.1 6 225 1056 2.76 3.46 20.2 Straight Automa™
i 2 more variables: gear <dbl>, carb <dbl>

230156 [

5

SPSS Data

mtcars4$am[1:20]

<labelled<double>[20]>: Transmission type
[1] 11 100000000000000111

Labels:

value label
0 Automatic
1 Manual

mtcars5$am[1:20]

[1] Manual Manual Manual Automatic Automatic

[6] Automatic Automatic Automatic Automatic Automatic
[11] Automatic Automatic Automatic Automatic Automatic
[16] Automatic Automatic Manual Manual Manual
Levels: Automatic Manual

210156 [

Excel Data

We have two good options for loading data from Excel spreadsheets:

e readxl::read_excel()

e openxlsx::read.xlsx()

Load the packages:
library(readxl)
library (openxlsx)

Use the readzl::read_excel () function to rTead the data from the 'titanic'
sheet of the Excel workbook stored at '../../../data/ezample_data.zlsz'
titanic2 <- read_excel(pasteO(dataDir, "example_data.xlsx"),

sheet = "titanic")

Use the openzlsz::read.zlsz() function to read the data from the 'titanic'’
sheet of the Ezcel workbook stored at '../../../data/ezample_data.zlsz'
titanic3 <- read.xlsx(pasteO(dataDir, "example_data.xlsx"),

sheet = "titanic")

25 ofs6 [

5

Excel Data

Check the results from read_exzcel():

str(titanic2)

tibble [887 x 8] (S3: tbl_df/tbl/data.frame)

$ survived
class
name
sex

$
$
$
$ age
$
$
$

siblings_spouses:
parents_children:
: num

fare

: chr
: chr
: chr
: chr
: num

num
num

[1:
[1:
[1:
[1:
[1:
[1:
[1:
[1:

8871
887]
8871
8871
8871
8871
8871
8871

Ilnoll llyesll llyesll Ilyesll

ll3rdll lllstll Ilsrdll Ilist n

"Mr. Owen Harris Braund" "Mrs. John Bradley (Fl«
"male" "female" "female" "female"

22 38 26 35 35 27 54 2 27 14 ...

1101000301 ...
0000000120 ...
7.25 71.28 7.92 53.1 8.05 ...

2 ors6 [

Excel Data

Check the results from read.zlsz():
str(titanic3)

'data.frame': 887 obs. of 8 variables:

" non non

$ survived : chr no" "yes yes yes"

$ class : chr "3rd" "1st" "3rd" "1ist"

$ name : chr "Mr. Owen Harris Braund" "Mrs. John Bradley (Florence I
$ sex : chr "male" "female" "female" "female"

$ age : num 22 38 26 35 35 27 54 2 27 14 ...

$ siblings_spouses: num 1 10100030 1

$ parents_children: num 0 000000120 ...

$ fare :num 7.25 71.28 7.92 53.1 8.05 ...

Compare:
all.equal(as.data.frame(titanic2), titanic3)

[1] TRUE

270156 [

Workspaces & Delimited Data

All of the data reading functions we saw earlier have complementary
data writing versions.

The save() function writes an R workspace to disk
save(boys, file = pasteO(dataDir, "tmp.RData"))

For delimited tezt files and RDS data, the write.table(), write.csv(), and
saveRDS() function do what you'd expect
write.table(boys,

pasteO(dataDir, "boys.txt"),

row.names = FALSE,

sep = "\t",
na = "-999")
write.csv2(boys, pasteO(dataDir, "boys.csv"), row.names = FALSE, na = "")

saveRDS (boys, pasteO(dataDir, "boys.rds"))

20156 [

SPSS Data

To write SPSS data, the best option is the haven::write_sav()
function.

write_sav(mtcars2, pasteO(dataDir, "mctars2.sav"))

write_sav() will preserve label information provided by factor
variables and the 'haven_labelled’ class.

290156 [

Excel Data

The openxlsx package provides a powerful toolkit for programmatically
building Excel workbooks in R and saving the results.

e Of course, it also works for simple data writing tasks.

Use the openzlsz::write.zlsz() function to write the 'diabetes' data to an
XLSX workbook
write.xlsx(diabetes, pasteO(dataDir, "diabetes.xlsx"), overwrite = TRUE)

Use the openzlsz::write.zlsz() function to write each data frame in a list

to a separate sheet of an XLSX workbook

write.xlsx(list(titanic = titanic, diabetes = diabetes, mtcars = mtcars),
pasteO(dataDir, "example_data.xlsx"),
overwrite = TRUE)

300156 [

FUNCTIONS

R Functions

Functions are the foundation of R programming.

¢ Other than data objects, almost everything else that you interact with
when using R is a function.

¢ Any R command written as a word followed by parentheses, () ,isa
function.
o mean()

o 1library()

o mutate()

e Infix operators are aliased functions.

320156 [

User-Defined Functions
We can define our own functions using the function() function.

square <- function(x) {
out <- x72
out

}

After defining a function, we call it in the usual way.
square(5)

[1] 25

One-line functions don't need braces.

square <- function(x) x"2
square(5)

[1] 25

330156 [

5

User-Defined Functions

Function arguments are not strictly typed.
square(1:5)

[1] 1 4 916 25

square (pi)

[1] 9.869604

square (TRUE)

[1] 1

But there are limits.

square("bob") # But one can only try so hard

Error in x"2: non-numeric argument to binary operator

340156 [

5

User-Defined Functions

Functions can take multiple arguments.

mod <- function(x, y) x %% y
mod (10, 3)

[1] 1
Sometimes it's useful to specify a list of arguments.
getLsBeta <- function(datList) {

X <- datList$X

y <- datList$y

solve(crossprod(X)) %*% t(X) %*% y

350f56 [

User-Defined Functions

X <- matrix(runif(500), ncol = 5)
datList <- list(y = X %*% rep(0.5, 5), X = X)

getLsBeta(datList = datList)

[,1]
[1,1] 0.5
[2,] 0.5
[3,1] 0.5
[4,] 0.5
[6,] 0.5

350156 [

User-Defined Functions

Functions are first-class objects in R.
e We can treat functions like any other R object.

R views an unevaluated function as an object with type “closure”.
class(getLsBeta)

[1] "function"

typeof (getLsBeta)

[1] "closure"

An evaluated functions is equivalent to the objects it returns.
class(getLsBeta(datList))

[1] "matrix" "array"

typeof (getLsBeta(datList))

[1] "double"

370156 [

5

Nested Functions

We can use functions as arguments to other operations and functions.

funl <- function(x, y) x + y

What will this command return?
fun1 (1, funi(l, 1))

[1] 3
Why would we care?

s2 <- var(runif(100))
x <= rnorm(100, 0, sqrt(s2))

30156 [

Nested Functions

X[1:8,]
[,1]

[1,] 0.52431382
[2,] 0.01926742
[3,] 0.05100735
[4,] 0.60566972
[5,] 0.48737303
[6,] 0.19941958
[7,] 0.95507804
[8,] 0.11093197
c(1, 3, 6:9, 12)
[1]

O O O O O O O o

[,2]

.67136447
.11693762
.18432074
.12944127
.94030405
.96670678
.38705829
.07731757

1 3 6 7 8 9 12

39 of 56

O OO O O O o o

[,3]

.28228726
.09148502
.43547799
.21000143
.23988619
.11455820
.49733535
.84923006

[,4]

.7148383
.6929171
.6097462
.2441917
.4915910
.1243947
.2968470
.8653987

[,5]

.54204681
.88371944
.09026598
.68141473
.36353771
.24253273
.81001800
.61914193

ITERATION

Loops

There are three types of loops in R: for, while, and until.
¢ You'll rarely use anything but the for loop.

¢ So, we won't discuss while or until loops.

A for loop is defined as follows.

for (INDEX in RANGE) { Stuff To Do with the Current INDEX Value }

#1076 [

Loops

For example, the following loop will sum the numbers from 1 to 100.
val <- 0

for(i in 1:100) {
val <- val + i
}

val

[1] 5050

s20rss [

Loops

This loop will compute the mean of every column in the mtcars

means <- rep(0, ncol(mtcars))
for(j in 1:ncol(mtcars)) {

means [j] <- mean(mtcars[, j1)
}

means

[1] 20.090625 6.187500 230.721875 146.687500
[6] 3.217250 17.848750 0.437500 0.406250
[11] 2.812500

o016 [

3.596563
3.687500

data.

Loops

Loops are often one of the least efficient solutions in R.
n <- 1le8

t0 <- system.time({
val0o <- 0O
for(i in 1:n) valO <- valO + i

o)

tl <- system.time(
vall <- sum(l:n)

)

aaorss [

Loops

Both approaches produce the same answer.

valO - vall

[1] o

But the loop is many times slower.

t0

user system elapsed
1.479 0.001 1.480

t1

user system elapsed
0 0 0

s ofs6 [

Loops

There is often a built in routine for what you are trying to accomplish
with the loop.

The appropriate way to get wvariable means:

colMeans (mtcars)
mpg cyl disp hp drat
20.090625 6.187500 230.721875 146.687500 3.596563
wt gsec vs am gear
3.217250 17.848750 0.437500 0.406250 3.687500
carb
2.812500

a5 0f5s [

Apply Statements

In R, some flavor of apply statement is often preferred to a loop.

e Apply statements broadcast some operation across the elements of a
data object.

e Apply statements can take advantage of internal optimizations that
loops can't use.

There are many flavors of apply statement in R, but the three most
common are:

e apply(O
e lapply()

e sapply()

470156 [

5

Apply Statements

Apply statements generally take one of two forms:

apply (DATA, MARGIN, FUNCTION, ...)

apply (DATA, FUNCTION, ...)

s orss [

Apply Examples

Load some exzample data:
data(mtcars)

Subset the data:
datl <- mtcars[1:5, 1:3]

Find the range of each row:
apply(datl, 1, range)

Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive

[1,] 6 6 4 6

[2,] 160 160 108 258
Hornet Sportabout

[1,] 8

[2,] 360

a0 ors6 [

Apply Examples

Find the mazimum value in each column:
apply(datl, 2, max)

mpg cyl disp
22.8 8.0 360.0

Subtract 1 from every cell:
apply(datl, 1:2, function(x) x - 1)

mpg cyl disp

Mazda RX4 20.0 5 159
Mazda RX4 Wag 20.0 5 159
Datsun 710 21.8 3 107
Hornet 4 Drive 20.4 5 257
Hornet Sportabout 17.7 7 359

s00rs6 [

Apply Examples

Create a toy list:
11 <- 1listQ)
for(i in 1:3) 11[[i]] <- runif(10)

Find the mean of each list entry:
lapply(1l1l, mean)

[[111
[1] 0.526697

[[21]
[1] 0.4020885

[[311
[1] 0.607818

Same as above, but return the result as a vector:
sapply (11, mean)

[1] 0.5266970 0.4020885 0.6078180

51 0fs6 [

5

Apply Examples

Find the range of each list entry:
lapply(1l1l, range)

[r111
[1] 0.04395916 0.99350611

[[2]1]
[1] 0.002797563 0.821082495

[[311
[1] 0.09926892 0.90430843

sapply (11, range)
[,1] [,2] [,3]

[1,] 0.04395916 0.002797563 0.09926892
[2,]1 0.99350611 0.821082495 0.90430843

52 of 56

Apply Examples

We can add additional arguments needed by the function.
e These arguments must be named.

apply(datl, 2, mean, trim = 0.1)

mpg cyl disp
20.98 6.00 209.20

sapply(datl, mean, trim = 0.1)

mpg cyl disp
20.98 6.00 209.20

530156 [

Some Programming Tips

You can save yourself a great deal of heartache by following a few
simple guidelines.

e Keep your code tidy.

e Use comments to clarify what you are doing.

e When working with functions in RStudio, use the TAB key to quickly
access the documentation of the function’'s arguments.

e Give your R scripts and objects meaningful names.

e Use a consistent directory structure and RStudio projects.

s0rs6 [

General Style Advice

Use common sense and BE CONSISTENT.

e Browse the tidyverse style guide.

o The point of style guidelines is to enforce a common vocabulary.
o You want people to concentrate on what you're saying, not how you're
saying it.

¢ If the code you add to a project/codebase looks drastically different
from the extant code, the incongruity will confuse readers and
collaborators.

Spacing and whitespace are your friends.
e a<-c(1,2,3,4,5)
e a<-c(1, 2, 3, 4, 5)

¢ At least put spaces around assignment operators and after every
commal

55 ors6 [

https://style.tidyverse.org

References

Becker, R. A., & Chambers, J. M. (1984). S: an interactive environment for
data analysis and graphics. Monterey, CA: Wadsworth and
Brooks/Cole.

Becker, R. A., Chambers, J. M., & Wilks, A. R. (1988). The new S language.
London: Chapman & Hall.

Chambers,). M. (1998). Programming with data: A guide to the S language.
New York: Springer Science & Business Media.

Chambers,). M., & Hastie, T. J. (1992). Statistical models in s. London:;
Chapman & Hall.

Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and
graphics. Journal of Computational and Graphical Statistics, 5(3),
299-314.

56 0fs6 [

	The R Statistical Programming Language
	Data I/O
	Functions
	Iteration
	References

