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Attribution

This course was originally developed by Gerko Vink. You can access the
original version of these materials on Dr. Vink’s GitHub page:
https://github.com/gerkovink/fundamentals. The course materials

have been (extensively) modified. Any errors or inaccuracies introduced
via these modifications are fully my own responsibility and shall not be
taken as representing the views and/or beliefs of Dr. Vink. You can see

Gerko’s version of the course on his personal website:
https://www.gerkovink.com/fundamentals.
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What is “Open-Source”?

R is an open-source software project, but what does that mean?

• Source code is freely available to anyone who wants it.

◦ Free Speech, not necessarily Free Beer

• Anyone can edit the original source code to suit their needs.

◦ Ego-less programming

• Many open source programs are also “freeware” that are available
free of charge.

◦ R is both open-source and freeware
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What is R?

I prefer to think about R as a statistical programming language, rather
than as a data analysis program.

• R IS NOT its GUI (no matter which GUI you use).

• You can write R code in whatever program you like (e.g., RStudio,
EMACS, VIM, Notepad, directly in the console/shell/command line).

• R can be used for basic (or advanced) data analysis, but its real
strength is its flexible programming framework.
◦ Tedious tasks can be automated.
◦ Computationally demanding jobs can be run in parallel.
◦ R-based research wants to be reproducible.
◦ Analyses are automatically documented via their scripts.
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What is RStudio?

RStudio is an integrated development environment (IDE) for R.

• Adds a bunch of window dressing to R

• Also open-source

• Both free and paid versions

R and RStudio are independent entities.

• You do not need RStudio to work with R.
• You are analyzing your data with R, not RStudio

◦ RStudio is just the interface through which you interact with R.
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Getting R

You can download R, for free, from the following web page:

• https://www.r-project.org/

Likewise, you can freely download RStudio via the following page:

• https://posit.co/downloads/
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How R Works

R is an interpreted programming language.

• The commands you enter into the R Console are executed
immediately.

• You don’t need to compile your code before running it.

• In this sense, interacting with R is similar to interacting with other
syntax-based statistical packages (e.g., SAS, STATA, Mplus).
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Interacting with R

When working with R, you will write scripts that contain all of the
commands you want to execute.

• There is no “clicky-box” Tom-foolery in R.

• Your script can be run interactively or in “batch-mode”, as a
self-contained program.

The primary purpose of the commands in your script will be to create
and modify various objects (e.g., datasets, variables, function calls,
graphical devices).
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Getting Help
Everything published on the Comprehensive R Archive Network (CRAN),
and intended for R users, must be accompanied by a help file.
• If you know the name of the function (e.g., anova() ), then execute

?anova or help(anova) .

• If you do not know the name of the function, type ?? followed by
your search criterion.
◦ For example, ??anova returns a list of all help pages that contain the

word ”anova”.

The internet can also tell you almost everything you’d like to know.
• Sites such as http://www.stackoverflow.com and
http://www.stackexchange.com can be very helpful.

• If you google R-related issues, include ”R” somewhere in your search
string.
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Packages

Packages give R additional functionality.

• By default, some packages are included when you install R.

• These packages allow you to do common statistical analyses and data
manipulation.

• Installing additional packages allows you to perform state-of-the-art
statistical analyses.

11 of 56



Packages

These packages are all developed by R users, so the throughput process
is very timely.

• Newly developed functions and software are readily available

• Software implementations of new methods can be quickly
disseminated

• This efficiency differs from other mainstream software (e.g., SPSS,
SAS, MPlus) where new methodology may take years to be
implemented.

A list of available packages can be found on CRAN.
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Installing & Loading Packages

Install a package (e.g., mice):

install.packages("mice")

There are two ways to load a package into R

library(stats)

require(stats)
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Project Management

Getting a handle on three key concepts will dramatically improve your
data analytic life.

1. Working directories

2. Directory structures and file paths

3. RStudio projects
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Data I/O
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R Data & Workspaces

R has two native data formats.

## Load the built-in 'bfi' data from the 'psychTools' package

data(bfi, package = "psychTools")

## Access the documentation for the 'bfi' data

?psychTools::bfi

## Define the directory holding our data

dataDir <- "../../../data/"

## Load the 'boys' data from the R workspace

## '../../../data/boys.RData'

load(paste0(dataDir, "boys.RData"))

## Load the 'titanic' data stored in R data set

## '../../../data/titanic.rds'

titanic <- readRDS(paste0(dataDir, "titanic.rds"))
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Delimited Data Types

## Load the 'diabetes' data from the tab-delimited file

## '../../../data/diabetes.txt'

diabetes <- read.table(paste0(dataDir, "diabetes.txt"),

header = TRUE,

sep = "\t")

## Load the 2017 UTMB data from the comma-separated file

## '../../../data/utmb_2017.csv'

utmb1 <- read.csv(paste0(dataDir, "utmb_2017.csv"))

Notes:
• The read.csv() function assumes the values are separated by

commas.
• For EU-formatted CSV files—with values delimited by semicolons—we

can use the read.csv2() function.
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SPSS Data
Reading data in from other stats packages can be a bit tricky. If we want
to read SAV files, there are two popular options:
• foreign::read.spss()

• haven::read_spss()

## Load the foreign package:

library(foreign)

## Use foreign::read.spss() to read '../../../data/mtcars.sav' into a list

mtcars1 <- read.spss(paste0(dataDir, "mtcars.sav"))

## Read '../../../data/mtcars.sav' as a data frame

mtcars2 <- read.spss(paste0(dataDir, "mtcars.sav"), to.data.frame = TRUE)

## Read '../../../data/mtcars.sav' without value labels

mtcars3 <- read.spss(paste0(dataDir, "mtcars.sav"),

to.data.frame = TRUE,

use.value.labels = FALSE)
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SPSS Data

## View the results:

mtcars1[1:3]

$mpg

[1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8

[12] 16.4 17.3 15.2 10.4 10.4 14.7 32.4 30.4 33.9 21.5 15.5

[23] 15.2 13.3 19.2 27.3 26.0 30.4 15.8 19.7 15.0 21.4

$cyl

[1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4 4

[29] 8 6 8 4

$disp

[1] 160.0 160.0 108.0 258.0 360.0 225.0 360.0 146.7 140.8

[10] 167.6 167.6 275.8 275.8 275.8 472.0 460.0 440.0 78.7

[19] 75.7 71.1 120.1 318.0 304.0 350.0 400.0 79.0 120.3

[28] 95.1 351.0 145.0 301.0 121.0
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SPSS Data

head(mtcars2)

mpg cyl disp hp drat wt qsec vs am

1 21.0 6 160 110 3.90 2.620 16.46 V-Shaped Manual

2 21.0 6 160 110 3.90 2.875 17.02 V-Shaped Manual

3 22.8 4 108 93 3.85 2.320 18.61 Straight Manual

4 21.4 6 258 110 3.08 3.215 19.44 Straight Automatic

5 18.7 8 360 175 3.15 3.440 17.02 V-Shaped Automatic

6 18.1 6 225 105 2.76 3.460 20.22 Straight Automatic

gear carb

1 4 4

2 4 4

3 4 1

4 3 1

5 3 2

6 3 1

20 of 56



SPSS Data

head(mtcars3)

mpg cyl disp hp drat wt qsec vs am gear carb

1 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4

2 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4

3 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1

4 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1

5 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

6 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
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SPSS Data

## Load the packages:

library(haven)

library(labelled)

## Use haven::read_spss() to read '../../../data/mtcars.sav' into a tibble

mtcars4 <- read_spss(paste0(dataDir, "mtcars.sav"))

head(mtcars4)

# A tibble: 6 x 11

mpg cyl disp hp drat wt qsec vs am

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl+lb> <dbl+l>

1 21 6 160 110 3.9 2.62 16.5 0 [V-Sh~ 1 [Man~

2 21 6 160 110 3.9 2.88 17.0 0 [V-Sh~ 1 [Man~

3 22.8 4 108 93 3.85 2.32 18.6 1 [Stra~ 1 [Man~

4 21.4 6 258 110 3.08 3.22 19.4 1 [Stra~ 0 [Aut~

5 18.7 8 360 175 3.15 3.44 17.0 0 [V-Sh~ 0 [Aut~

6 18.1 6 225 105 2.76 3.46 20.2 1 [Stra~ 0 [Aut~

# i 2 more variables: gear <dbl>, carb <dbl>
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SPSS Data
haven::read_spss() converts any SPSS variables with labels into

labelled vectors.
• We can use the labelled::unlabelled() function to remove the

value labels.

mtcars5 <- unlabelled(mtcars4)

head(mtcars5)

# A tibble: 6 x 11

mpg cyl disp hp drat wt qsec vs am

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <fct>

1 21 6 160 110 3.9 2.62 16.5 V-Shaped Manual

2 21 6 160 110 3.9 2.88 17.0 V-Shaped Manual

3 22.8 4 108 93 3.85 2.32 18.6 Straight Manual

4 21.4 6 258 110 3.08 3.22 19.4 Straight Automa~

5 18.7 8 360 175 3.15 3.44 17.0 V-Shaped Automa~

6 18.1 6 225 105 2.76 3.46 20.2 Straight Automa~

# i 2 more variables: gear <dbl>, carb <dbl>
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SPSS Data

mtcars4$am[1:20]

<labelled<double>[20]>: Transmission type

[1] 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Labels:

value label

0 Automatic

1 Manual

mtcars5$am[1:20]

[1] Manual Manual Manual Automatic Automatic

[6] Automatic Automatic Automatic Automatic Automatic

[11] Automatic Automatic Automatic Automatic Automatic

[16] Automatic Automatic Manual Manual Manual

Levels: Automatic Manual
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Excel Data
We have two good options for loading data from Excel spreadsheets:
• readxl::read_excel()

• openxlsx::read.xlsx()

## Load the packages:

library(readxl)

library(openxlsx)

## Use the readxl::read_excel() function to read the data from the 'titanic'

## sheet of the Excel workbook stored at '../../../data/example_data.xlsx'

titanic2 <- read_excel(paste0(dataDir, "example_data.xlsx"),

sheet = "titanic")

## Use the openxlsx::read.xlsx() function to read the data from the 'titanic'

## sheet of the Excel workbook stored at '../../../data/example_data.xlsx'

titanic3 <- read.xlsx(paste0(dataDir, "example_data.xlsx"),

sheet = "titanic")
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Excel Data

## Check the results from read_excel():

str(titanic2)

tibble [887 x 8] (S3: tbl_df/tbl/data.frame)

$ survived : chr [1:887] "no" "yes" "yes" "yes" ...

$ class : chr [1:887] "3rd" "1st" "3rd" "1st" ...

$ name : chr [1:887] "Mr. Owen Harris Braund" "Mrs. John Bradley (Florence Briggs Thayer) Cumings" "Miss. Laina Heikkinen" "Mrs. Jacques Heath (Lily May Peel) Futrelle" ...

$ sex : chr [1:887] "male" "female" "female" "female" ...

$ age : num [1:887] 22 38 26 35 35 27 54 2 27 14 ...

$ siblings_spouses: num [1:887] 1 1 0 1 0 0 0 3 0 1 ...

$ parents_children: num [1:887] 0 0 0 0 0 0 0 1 2 0 ...

$ fare : num [1:887] 7.25 71.28 7.92 53.1 8.05 ...
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Excel Data

## Check the results from read.xlsx():

str(titanic3)

'data.frame': 887 obs. of 8 variables:

$ survived : chr "no" "yes" "yes" "yes" ...

$ class : chr "3rd" "1st" "3rd" "1st" ...

$ name : chr "Mr. Owen Harris Braund" "Mrs. John Bradley (Florence Briggs Thayer) Cumings" "Miss. Laina Heikkinen" "Mrs. Jacques Heath (Lily May Peel) Futrelle" ...

$ sex : chr "male" "female" "female" "female" ...

$ age : num 22 38 26 35 35 27 54 2 27 14 ...

$ siblings_spouses: num 1 1 0 1 0 0 0 3 0 1 ...

$ parents_children: num 0 0 0 0 0 0 0 1 2 0 ...

$ fare : num 7.25 71.28 7.92 53.1 8.05 ...

## Compare:

all.equal(as.data.frame(titanic2), titanic3)

[1] TRUE
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Workspaces & Delimited Data

All of the data reading functions we saw earlier have complementary
data writing versions.

## The save() function writes an R workspace to disk

save(boys, file = paste0(dataDir, "tmp.RData"))

## For delimited text files and RDS data, the write.table(), write.csv(), and

## saveRDS() function do what you'd expect

write.table(boys,

paste0(dataDir, "boys.txt"),

row.names = FALSE,

sep = "\t",
na = "-999")

write.csv2(boys, paste0(dataDir, "boys.csv"), row.names = FALSE, na = "")

saveRDS(boys, paste0(dataDir, "boys.rds"))
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SPSS Data

To write SPSS data, the best option is the haven::write_sav()

function.

write_sav(mtcars2, paste0(dataDir, "mctars2.sav"))

write_sav() will preserve label information provided by factor
variables and the ’haven labelled’ class.
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Excel Data

The openxlsx package provides a powerful toolkit for programmatically
building Excel workbooks in R and saving the results.
• Of course, it also works for simple data writing tasks.

## Use the openxlsx::write.xlsx() function to write the 'diabetes' data to an

## XLSX workbook

write.xlsx(diabetes, paste0(dataDir, "diabetes.xlsx"), overwrite = TRUE)

## Use the openxlsx::write.xlsx() function to write each data frame in a list

## to a separate sheet of an XLSX workbook

write.xlsx(list(titanic = titanic, diabetes = diabetes, mtcars = mtcars),

paste0(dataDir, "example_data.xlsx"),

overwrite = TRUE)
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Functions
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R Functions
Functions are the foundation of R programming.

• Other than data objects, almost everything else that you interact with
when using R is a function.

• Any R command written as a word followed by parentheses, () , is a
function.
◦ mean()

◦ library()

◦ mutate()

• Infix operators are aliased functions.

◦ <-

◦ + , - , *

◦ > , < , ==
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User-Defined Functions
We can define our own functions using the function() function.

square <- function(x) {
out <- x^2

out

}

After defining a function, we call it in the usual way.

square(5)

[1] 25

One-line functions don’t need braces.

square <- function(x) x^2

square(5)

[1] 25
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User-Defined Functions

Function arguments are not strictly typed.

square(1:5)

[1] 1 4 9 16 25

square(pi)

[1] 9.869604

square(TRUE)

[1] 1

But there are limits.

square("bob") # But one can only try so hard

Error in x^2: non-numeric argument to binary operator
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User-Defined Functions

Functions can take multiple arguments.

mod <- function(x, y) x %% y

mod(10, 3)

[1] 1

Sometimes it’s useful to specify a list of arguments.

getLsBeta <- function(datList) {
X <- datList$X

y <- datList$y

solve(crossprod(X)) %*% t(X) %*% y

}
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User-Defined Functions

X <- matrix(runif(500), ncol = 5)

datList <- list(y = X %*% rep(0.5, 5), X = X)

getLsBeta(datList = datList)

[,1]

[1,] 0.5

[2,] 0.5

[3,] 0.5

[4,] 0.5

[5,] 0.5
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User-Defined Functions
Functions are first-class objects in R.
• We can treat functions like any other R object.

R views an unevaluated function as an object with type ”closure”.

class(getLsBeta)

[1] "function"

typeof(getLsBeta)

[1] "closure"

An evaluated functions is equivalent to the objects it returns.

class(getLsBeta(datList))

[1] "matrix" "array"

typeof(getLsBeta(datList))

[1] "double"
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Nested Functions

We can use functions as arguments to other operations and functions.

fun1 <- function(x, y) x + y

## What will this command return?

fun1(1, fun1(1, 1))

[1] 3

Why would we care?

s2 <- var(runif(100))

x <- rnorm(100, 0, sqrt(s2))
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Nested Functions

X[1:8, ]

[,1] [,2] [,3] [,4] [,5]

[1,] 0.52431382 0.67136447 0.28228726 0.7148383 0.54204681

[2,] 0.01926742 0.11693762 0.09148502 0.6929171 0.88371944

[3,] 0.05100735 0.18432074 0.43547799 0.6097462 0.09026598

[4,] 0.60566972 0.12944127 0.21000143 0.2441917 0.68141473

[5,] 0.48737303 0.94030405 0.23988619 0.4915910 0.36353771

[6,] 0.19941958 0.96670678 0.11455820 0.1243947 0.24253273

[7,] 0.95507804 0.38705829 0.49733535 0.2968470 0.81001800

[8,] 0.11093197 0.07731757 0.84923006 0.8653987 0.61914193

c(1, 3, 6:9, 12)

[1] 1 3 6 7 8 9 12
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Iteration
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Loops

There are three types of loops in R: for, while, and until.

• You’ll rarely use anything but the for loop.

• So, we won’t discuss while or until loops.

A for loop is defined as follows.

for(INDEX in RANGE) { Stuff To Do with the Current INDEX Value }
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Loops

For example, the following loop will sum the numbers from 1 to 100.

val <- 0

for(i in 1:100) {
val <- val + i

}

val

[1] 5050
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Loops

This loop will compute the mean of every column in the mtcars data.

means <- rep(0, ncol(mtcars))

for(j in 1:ncol(mtcars)) {
means[j] <- mean(mtcars[ , j])

}

means

[1] 20.090625 6.187500 230.721875 146.687500 3.596563

[6] 3.217250 17.848750 0.437500 0.406250 3.687500

[11] 2.812500
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Loops

Loops are often one of the least efficient solutions in R.

n <- 1e8

t0 <- system.time({
val0 <- 0

for(i in 1:n) val0 <- val0 + i

})

t1 <- system.time(

val1 <- sum(1:n)

)
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Loops

Both approaches produce the same answer.

val0 - val1

[1] 0

But the loop is many times slower.

t0

user system elapsed

1.479 0.001 1.480

t1

user system elapsed

0 0 0
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Loops

There is often a built in routine for what you are trying to accomplish
with the loop.

## The appropriate way to get variable means:

colMeans(mtcars)

mpg cyl disp hp drat

20.090625 6.187500 230.721875 146.687500 3.596563

wt qsec vs am gear

3.217250 17.848750 0.437500 0.406250 3.687500

carb

2.812500
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Apply Statements

In R, some flavor of apply statement is often preferred to a loop.

• Apply statements broadcast some operation across the elements of a
data object.

• Apply statements can take advantage of internal optimizations that
loops can’t use.

There are many flavors of apply statement in R, but the three most
common are:

• apply()

• lapply()

• sapply()
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Apply Statements

Apply statements generally take one of two forms:

apply(DATA, MARGIN, FUNCTION, ...)

apply(DATA, FUNCTION, ...)
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Apply Examples

## Load some example data:

data(mtcars)

## Subset the data:

dat1 <- mtcars[1:5, 1:3]

## Find the range of each row:

apply(dat1, 1, range)

Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive

[1,] 6 6 4 6

[2,] 160 160 108 258

Hornet Sportabout

[1,] 8

[2,] 360
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Apply Examples

## Find the maximum value in each column:

apply(dat1, 2, max)

mpg cyl disp

22.8 8.0 360.0

## Subtract 1 from every cell:

apply(dat1, 1:2, function(x) x - 1)

mpg cyl disp

Mazda RX4 20.0 5 159

Mazda RX4 Wag 20.0 5 159

Datsun 710 21.8 3 107

Hornet 4 Drive 20.4 5 257

Hornet Sportabout 17.7 7 359
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Apply Examples

## Create a toy list:

l1 <- list()

for(i in 1:3) l1[[i]] <- runif(10)

## Find the mean of each list entry:

lapply(l1, mean)

[[1]]

[1] 0.526697

[[2]]

[1] 0.4020885

[[3]]

[1] 0.607818

## Same as above, but return the result as a vector:

sapply(l1, mean)

[1] 0.5266970 0.4020885 0.6078180
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Apply Examples

## Find the range of each list entry:

lapply(l1, range)

[[1]]

[1] 0.04395916 0.99350611

[[2]]

[1] 0.002797563 0.821082495

[[3]]

[1] 0.09926892 0.90430843

sapply(l1, range)

[,1] [,2] [,3]

[1,] 0.04395916 0.002797563 0.09926892

[2,] 0.99350611 0.821082495 0.90430843
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Apply Examples

We can add additional arguments needed by the function.
• These arguments must be named.

apply(dat1, 2, mean, trim = 0.1)

mpg cyl disp

20.98 6.00 209.20

sapply(dat1, mean, trim = 0.1)

mpg cyl disp

20.98 6.00 209.20
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Some Programming Tips

You can save yourself a great deal of heartache by following a few
simple guidelines.
• Keep your code tidy.

• Use comments to clarify what you are doing.

• When working with functions in RStudio, use the TAB key to quickly
access the documentation of the function’s arguments.

• Give your R scripts and objects meaningful names.

• Use a consistent directory structure and RStudio projects.
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General Style Advice
Use common sense and BE CONSISTENT.
• Browse the tidyverse style guide.

◦ The point of style guidelines is to enforce a common vocabulary.
◦ You want people to concentrate on what you’re saying, not how you’re

saying it.

• If the code you add to a project/codebase looks drastically different
from the extant code, the incongruity will confuse readers and
collaborators.

Spacing and whitespace are your friends.

• a<-c(1,2,3,4,5)

• a <- c(1, 2, 3, 4, 5)

• At least put spaces around assignment operators and after every
comma!
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