
R Basics
Fundamental Techniques in Data Science

Kyle M. Lang

Department of Methodology & Statistics
Utrecht University

Outline

The R Statistical Programming Language

Data I/O

Functions

Iteration

2 of 56

Attribution

This course was originally developed by Gerko Vink. You can access the
original version of these materials on Dr. Vink’s GitHub page:
https://github.com/gerkovink/fundamentals. The course materials

have been (extensively) modified. Any errors or inaccuracies introduced
via these modifications are fully my own responsibility and shall not be
taken as representing the views and/or beliefs of Dr. Vink. You can see

Gerko’s version of the course on his personal website:
https://www.gerkovink.com/fundamentals.

3 of 56

https://github.com/gerkovink/fundamentals
https://www.gerkovink.com/fundamentals

What is “Open-Source”?

R is an open-source software project, but what does that mean?

• Source code is freely available to anyone who wants it.

◦ Free Speech, not necessarily Free Beer

• Anyone can edit the original source code to suit their needs.

◦ Ego-less programming

• Many open source programs are also “freeware” that are available
free of charge.

◦ R is both open-source and freeware

4 of 56

What is R?

I prefer to think about R as a statistical programming language, rather
than as a data analysis program.

• R IS NOT its GUI (no matter which GUI you use).

• You can write R code in whatever program you like (e.g., RStudio,
EMACS, VIM, Notepad, directly in the console/shell/command line).

• R can be used for basic (or advanced) data analysis, but its real
strength is its flexible programming framework.
◦ Tedious tasks can be automated.
◦ Computationally demanding jobs can be run in parallel.
◦ R-based research wants to be reproducible.
◦ Analyses are automatically documented via their scripts.

5 of 56

What is RStudio?

RStudio is an integrated development environment (IDE) for R.

• Adds a bunch of window dressing to R

• Also open-source

• Both free and paid versions

R and RStudio are independent entities.

• You do not need RStudio to work with R.
• You are analyzing your data with R, not RStudio

◦ RStudio is just the interface through which you interact with R.

6 of 56

Getting R

You can download R, for free, from the following web page:

• https://www.r-project.org/

Likewise, you can freely download RStudio via the following page:

• https://posit.co/downloads/

7 of 56

https://www.r-project.org/
https://posit.co/downloads/

How R Works

R is an interpreted programming language.

• The commands you enter into the R Console are executed
immediately.

• You don’t need to compile your code before running it.

• In this sense, interacting with R is similar to interacting with other
syntax-based statistical packages (e.g., SAS, STATA, Mplus).

8 of 56

Interacting with R

When working with R, you will write scripts that contain all of the
commands you want to execute.

• There is no “clicky-box” Tom-foolery in R.

• Your script can be run interactively or in “batch-mode”, as a
self-contained program.

The primary purpose of the commands in your script will be to create
and modify various objects (e.g., datasets, variables, function calls,
graphical devices).

9 of 56

Getting Help
Everything published on the Comprehensive R Archive Network (CRAN),
and intended for R users, must be accompanied by a help file.
• If you know the name of the function (e.g., anova()), then execute

?anova or help(anova) .

• If you do not know the name of the function, type ?? followed by
your search criterion.
◦ For example, ??anova returns a list of all help pages that contain the

word ”anova”.

The internet can also tell you almost everything you’d like to know.
• Sites such as http://www.stackoverflow.com and
http://www.stackexchange.com can be very helpful.

• If you google R-related issues, include ”R” somewhere in your search
string.

10 of 56

http://www.stackoverflow.com
http://www.stackexchange.com

Packages

Packages give R additional functionality.

• By default, some packages are included when you install R.

• These packages allow you to do common statistical analyses and data
manipulation.

• Installing additional packages allows you to perform state-of-the-art
statistical analyses.

11 of 56

Packages

These packages are all developed by R users, so the throughput process
is very timely.

• Newly developed functions and software are readily available

• Software implementations of new methods can be quickly
disseminated

• This efficiency differs from other mainstream software (e.g., SPSS,
SAS, MPlus) where new methodology may take years to be
implemented.

A list of available packages can be found on CRAN.

12 of 56

https://cran.r-project.org

Installing & Loading Packages

Install a package (e.g., mice):

install.packages("mice")

There are two ways to load a package into R

library(stats)

require(stats)

13 of 56

Project Management

Getting a handle on three key concepts will dramatically improve your
data analytic life.

1. Working directories

2. Directory structures and file paths

3. RStudio projects

14 of 56

Data I/O

15 of 56

R Data & Workspaces

R has two native data formats.

Load the built-in 'bfi' data from the 'psychTools' package

data(bfi, package = "psychTools")

Access the documentation for the 'bfi' data

?psychTools::bfi

Define the directory holding our data

dataDir <- "../../../data/"

Load the 'boys' data from the R workspace

'../../../data/boys.RData'

load(paste0(dataDir, "boys.RData"))

Load the 'titanic' data stored in R data set

'../../../data/titanic.rds'

titanic <- readRDS(paste0(dataDir, "titanic.rds"))

16 of 56

Delimited Data Types

Load the 'diabetes' data from the tab-delimited file

'../../../data/diabetes.txt'

diabetes <- read.table(paste0(dataDir, "diabetes.txt"),

header = TRUE,

sep = "\t")

Load the 2017 UTMB data from the comma-separated file

'../../../data/utmb_2017.csv'

utmb1 <- read.csv(paste0(dataDir, "utmb_2017.csv"))

Notes:
• The read.csv() function assumes the values are separated by

commas.
• For EU-formatted CSV files—with values delimited by semicolons—we

can use the read.csv2() function.

17 of 56

SPSS Data
Reading data in from other stats packages can be a bit tricky. If we want
to read SAV files, there are two popular options:
• foreign::read.spss()

• haven::read_spss()

Load the foreign package:

library(foreign)

Use foreign::read.spss() to read '../../../data/mtcars.sav' into a list

mtcars1 <- read.spss(paste0(dataDir, "mtcars.sav"))

Read '../../../data/mtcars.sav' as a data frame

mtcars2 <- read.spss(paste0(dataDir, "mtcars.sav"), to.data.frame = TRUE)

Read '../../../data/mtcars.sav' without value labels

mtcars3 <- read.spss(paste0(dataDir, "mtcars.sav"),

to.data.frame = TRUE,

use.value.labels = FALSE)

18 of 56

SPSS Data

View the results:

mtcars1[1:3]

$mpg

[1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8

[12] 16.4 17.3 15.2 10.4 10.4 14.7 32.4 30.4 33.9 21.5 15.5

[23] 15.2 13.3 19.2 27.3 26.0 30.4 15.8 19.7 15.0 21.4

$cyl

[1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4 4

[29] 8 6 8 4

$disp

[1] 160.0 160.0 108.0 258.0 360.0 225.0 360.0 146.7 140.8

[10] 167.6 167.6 275.8 275.8 275.8 472.0 460.0 440.0 78.7

[19] 75.7 71.1 120.1 318.0 304.0 350.0 400.0 79.0 120.3

[28] 95.1 351.0 145.0 301.0 121.0

19 of 56

SPSS Data

head(mtcars2)

mpg cyl disp hp drat wt qsec vs am

1 21.0 6 160 110 3.90 2.620 16.46 V-Shaped Manual

2 21.0 6 160 110 3.90 2.875 17.02 V-Shaped Manual

3 22.8 4 108 93 3.85 2.320 18.61 Straight Manual

4 21.4 6 258 110 3.08 3.215 19.44 Straight Automatic

5 18.7 8 360 175 3.15 3.440 17.02 V-Shaped Automatic

6 18.1 6 225 105 2.76 3.460 20.22 Straight Automatic

gear carb

1 4 4

2 4 4

3 4 1

4 3 1

5 3 2

6 3 1

20 of 56

SPSS Data

head(mtcars3)

mpg cyl disp hp drat wt qsec vs am gear carb

1 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4

2 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4

3 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1

4 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1

5 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

6 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

21 of 56

SPSS Data

Load the packages:

library(haven)

library(labelled)

Use haven::read_spss() to read '../../../data/mtcars.sav' into a tibble

mtcars4 <- read_spss(paste0(dataDir, "mtcars.sav"))

head(mtcars4)

A tibble: 6 x 11

mpg cyl disp hp drat wt qsec vs am

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl+lb> <dbl+l>

1 21 6 160 110 3.9 2.62 16.5 0 [V-Sh~ 1 [Man~

2 21 6 160 110 3.9 2.88 17.0 0 [V-Sh~ 1 [Man~

3 22.8 4 108 93 3.85 2.32 18.6 1 [Stra~ 1 [Man~

4 21.4 6 258 110 3.08 3.22 19.4 1 [Stra~ 0 [Aut~

5 18.7 8 360 175 3.15 3.44 17.0 0 [V-Sh~ 0 [Aut~

6 18.1 6 225 105 2.76 3.46 20.2 1 [Stra~ 0 [Aut~

i 2 more variables: gear <dbl>, carb <dbl>

22 of 56

SPSS Data
haven::read_spss() converts any SPSS variables with labels into

labelled vectors.
• We can use the labelled::unlabelled() function to remove the

value labels.

mtcars5 <- unlabelled(mtcars4)

head(mtcars5)

A tibble: 6 x 11

mpg cyl disp hp drat wt qsec vs am

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <fct>

1 21 6 160 110 3.9 2.62 16.5 V-Shaped Manual

2 21 6 160 110 3.9 2.88 17.0 V-Shaped Manual

3 22.8 4 108 93 3.85 2.32 18.6 Straight Manual

4 21.4 6 258 110 3.08 3.22 19.4 Straight Automa~

5 18.7 8 360 175 3.15 3.44 17.0 V-Shaped Automa~

6 18.1 6 225 105 2.76 3.46 20.2 Straight Automa~

i 2 more variables: gear <dbl>, carb <dbl>

23 of 56

SPSS Data

mtcars4$am[1:20]

<labelled<double>[20]>: Transmission type

[1] 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Labels:

value label

0 Automatic

1 Manual

mtcars5$am[1:20]

[1] Manual Manual Manual Automatic Automatic

[6] Automatic Automatic Automatic Automatic Automatic

[11] Automatic Automatic Automatic Automatic Automatic

[16] Automatic Automatic Manual Manual Manual

Levels: Automatic Manual

24 of 56

Excel Data
We have two good options for loading data from Excel spreadsheets:
• readxl::read_excel()

• openxlsx::read.xlsx()

Load the packages:

library(readxl)

library(openxlsx)

Use the readxl::read_excel() function to read the data from the 'titanic'

sheet of the Excel workbook stored at '../../../data/example_data.xlsx'

titanic2 <- read_excel(paste0(dataDir, "example_data.xlsx"),

sheet = "titanic")

Use the openxlsx::read.xlsx() function to read the data from the 'titanic'

sheet of the Excel workbook stored at '../../../data/example_data.xlsx'

titanic3 <- read.xlsx(paste0(dataDir, "example_data.xlsx"),

sheet = "titanic")

25 of 56

Excel Data

Check the results from read_excel():

str(titanic2)

tibble [887 x 8] (S3: tbl_df/tbl/data.frame)

$ survived : chr [1:887] "no" "yes" "yes" "yes" ...

$ class : chr [1:887] "3rd" "1st" "3rd" "1st" ...

$ name : chr [1:887] "Mr. Owen Harris Braund" "Mrs. John Bradley (Florence Briggs Thayer) Cumings" "Miss. Laina Heikkinen" "Mrs. Jacques Heath (Lily May Peel) Futrelle" ...

$ sex : chr [1:887] "male" "female" "female" "female" ...

$ age : num [1:887] 22 38 26 35 35 27 54 2 27 14 ...

$ siblings_spouses: num [1:887] 1 1 0 1 0 0 0 3 0 1 ...

$ parents_children: num [1:887] 0 0 0 0 0 0 0 1 2 0 ...

$ fare : num [1:887] 7.25 71.28 7.92 53.1 8.05 ...

26 of 56

Excel Data

Check the results from read.xlsx():

str(titanic3)

'data.frame': 887 obs. of 8 variables:

$ survived : chr "no" "yes" "yes" "yes" ...

$ class : chr "3rd" "1st" "3rd" "1st" ...

$ name : chr "Mr. Owen Harris Braund" "Mrs. John Bradley (Florence Briggs Thayer) Cumings" "Miss. Laina Heikkinen" "Mrs. Jacques Heath (Lily May Peel) Futrelle" ...

$ sex : chr "male" "female" "female" "female" ...

$ age : num 22 38 26 35 35 27 54 2 27 14 ...

$ siblings_spouses: num 1 1 0 1 0 0 0 3 0 1 ...

$ parents_children: num 0 0 0 0 0 0 0 1 2 0 ...

$ fare : num 7.25 71.28 7.92 53.1 8.05 ...

Compare:

all.equal(as.data.frame(titanic2), titanic3)

[1] TRUE

27 of 56

Workspaces & Delimited Data

All of the data reading functions we saw earlier have complementary
data writing versions.

The save() function writes an R workspace to disk

save(boys, file = paste0(dataDir, "tmp.RData"))

For delimited text files and RDS data, the write.table(), write.csv(), and

saveRDS() function do what you'd expect

write.table(boys,

paste0(dataDir, "boys.txt"),

row.names = FALSE,

sep = "\t",
na = "-999")

write.csv2(boys, paste0(dataDir, "boys.csv"), row.names = FALSE, na = "")

saveRDS(boys, paste0(dataDir, "boys.rds"))

28 of 56

SPSS Data

To write SPSS data, the best option is the haven::write_sav()

function.

write_sav(mtcars2, paste0(dataDir, "mctars2.sav"))

write_sav() will preserve label information provided by factor
variables and the ’haven labelled’ class.

29 of 56

Excel Data

The openxlsx package provides a powerful toolkit for programmatically
building Excel workbooks in R and saving the results.
• Of course, it also works for simple data writing tasks.

Use the openxlsx::write.xlsx() function to write the 'diabetes' data to an

XLSX workbook

write.xlsx(diabetes, paste0(dataDir, "diabetes.xlsx"), overwrite = TRUE)

Use the openxlsx::write.xlsx() function to write each data frame in a list

to a separate sheet of an XLSX workbook

write.xlsx(list(titanic = titanic, diabetes = diabetes, mtcars = mtcars),

paste0(dataDir, "example_data.xlsx"),

overwrite = TRUE)

30 of 56

Functions

31 of 56

R Functions
Functions are the foundation of R programming.

• Other than data objects, almost everything else that you interact with
when using R is a function.

• Any R command written as a word followed by parentheses, () , is a
function.
◦ mean()

◦ library()

◦ mutate()

• Infix operators are aliased functions.

◦ <-

◦ + , - , *

◦ > , < , ==

32 of 56

User-Defined Functions
We can define our own functions using the function() function.

square <- function(x) {
out <- x^2

out

}

After defining a function, we call it in the usual way.

square(5)

[1] 25

One-line functions don’t need braces.

square <- function(x) x^2

square(5)

[1] 25

33 of 56

User-Defined Functions

Function arguments are not strictly typed.

square(1:5)

[1] 1 4 9 16 25

square(pi)

[1] 9.869604

square(TRUE)

[1] 1

But there are limits.

square("bob") # But one can only try so hard

Error in x^2: non-numeric argument to binary operator

34 of 56

User-Defined Functions

Functions can take multiple arguments.

mod <- function(x, y) x %% y

mod(10, 3)

[1] 1

Sometimes it’s useful to specify a list of arguments.

getLsBeta <- function(datList) {
X <- datList$X

y <- datList$y

solve(crossprod(X)) %*% t(X) %*% y

}

35 of 56

User-Defined Functions

X <- matrix(runif(500), ncol = 5)

datList <- list(y = X %*% rep(0.5, 5), X = X)

getLsBeta(datList = datList)

[,1]

[1,] 0.5

[2,] 0.5

[3,] 0.5

[4,] 0.5

[5,] 0.5

36 of 56

User-Defined Functions
Functions are first-class objects in R.
• We can treat functions like any other R object.

R views an unevaluated function as an object with type ”closure”.

class(getLsBeta)

[1] "function"

typeof(getLsBeta)

[1] "closure"

An evaluated functions is equivalent to the objects it returns.

class(getLsBeta(datList))

[1] "matrix" "array"

typeof(getLsBeta(datList))

[1] "double"

37 of 56

Nested Functions

We can use functions as arguments to other operations and functions.

fun1 <- function(x, y) x + y

What will this command return?

fun1(1, fun1(1, 1))

[1] 3

Why would we care?

s2 <- var(runif(100))

x <- rnorm(100, 0, sqrt(s2))

38 of 56

Nested Functions

X[1:8,]

[,1] [,2] [,3] [,4] [,5]

[1,] 0.52431382 0.67136447 0.28228726 0.7148383 0.54204681

[2,] 0.01926742 0.11693762 0.09148502 0.6929171 0.88371944

[3,] 0.05100735 0.18432074 0.43547799 0.6097462 0.09026598

[4,] 0.60566972 0.12944127 0.21000143 0.2441917 0.68141473

[5,] 0.48737303 0.94030405 0.23988619 0.4915910 0.36353771

[6,] 0.19941958 0.96670678 0.11455820 0.1243947 0.24253273

[7,] 0.95507804 0.38705829 0.49733535 0.2968470 0.81001800

[8,] 0.11093197 0.07731757 0.84923006 0.8653987 0.61914193

c(1, 3, 6:9, 12)

[1] 1 3 6 7 8 9 12

39 of 56

Iteration

40 of 56

Loops

There are three types of loops in R: for, while, and until.

• You’ll rarely use anything but the for loop.

• So, we won’t discuss while or until loops.

A for loop is defined as follows.

for(INDEX in RANGE) { Stuff To Do with the Current INDEX Value }

41 of 56

Loops

For example, the following loop will sum the numbers from 1 to 100.

val <- 0

for(i in 1:100) {
val <- val + i

}

val

[1] 5050

42 of 56

Loops

This loop will compute the mean of every column in the mtcars data.

means <- rep(0, ncol(mtcars))

for(j in 1:ncol(mtcars)) {
means[j] <- mean(mtcars[, j])

}

means

[1] 20.090625 6.187500 230.721875 146.687500 3.596563

[6] 3.217250 17.848750 0.437500 0.406250 3.687500

[11] 2.812500

43 of 56

Loops

Loops are often one of the least efficient solutions in R.

n <- 1e8

t0 <- system.time({
val0 <- 0

for(i in 1:n) val0 <- val0 + i

})

t1 <- system.time(

val1 <- sum(1:n)

)

44 of 56

Loops

Both approaches produce the same answer.

val0 - val1

[1] 0

But the loop is many times slower.

t0

user system elapsed

1.479 0.001 1.480

t1

user system elapsed

0 0 0

45 of 56

Loops

There is often a built in routine for what you are trying to accomplish
with the loop.

The appropriate way to get variable means:

colMeans(mtcars)

mpg cyl disp hp drat

20.090625 6.187500 230.721875 146.687500 3.596563

wt qsec vs am gear

3.217250 17.848750 0.437500 0.406250 3.687500

carb

2.812500

46 of 56

Apply Statements

In R, some flavor of apply statement is often preferred to a loop.

• Apply statements broadcast some operation across the elements of a
data object.

• Apply statements can take advantage of internal optimizations that
loops can’t use.

There are many flavors of apply statement in R, but the three most
common are:

• apply()

• lapply()

• sapply()

47 of 56

Apply Statements

Apply statements generally take one of two forms:

apply(DATA, MARGIN, FUNCTION, ...)

apply(DATA, FUNCTION, ...)

48 of 56

Apply Examples

Load some example data:

data(mtcars)

Subset the data:

dat1 <- mtcars[1:5, 1:3]

Find the range of each row:

apply(dat1, 1, range)

Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive

[1,] 6 6 4 6

[2,] 160 160 108 258

Hornet Sportabout

[1,] 8

[2,] 360

49 of 56

Apply Examples

Find the maximum value in each column:

apply(dat1, 2, max)

mpg cyl disp

22.8 8.0 360.0

Subtract 1 from every cell:

apply(dat1, 1:2, function(x) x - 1)

mpg cyl disp

Mazda RX4 20.0 5 159

Mazda RX4 Wag 20.0 5 159

Datsun 710 21.8 3 107

Hornet 4 Drive 20.4 5 257

Hornet Sportabout 17.7 7 359

50 of 56

Apply Examples

Create a toy list:

l1 <- list()

for(i in 1:3) l1[[i]] <- runif(10)

Find the mean of each list entry:

lapply(l1, mean)

[[1]]

[1] 0.526697

[[2]]

[1] 0.4020885

[[3]]

[1] 0.607818

Same as above, but return the result as a vector:

sapply(l1, mean)

[1] 0.5266970 0.4020885 0.6078180

51 of 56

Apply Examples

Find the range of each list entry:

lapply(l1, range)

[[1]]

[1] 0.04395916 0.99350611

[[2]]

[1] 0.002797563 0.821082495

[[3]]

[1] 0.09926892 0.90430843

sapply(l1, range)

[,1] [,2] [,3]

[1,] 0.04395916 0.002797563 0.09926892

[2,] 0.99350611 0.821082495 0.90430843

52 of 56

Apply Examples

We can add additional arguments needed by the function.
• These arguments must be named.

apply(dat1, 2, mean, trim = 0.1)

mpg cyl disp

20.98 6.00 209.20

sapply(dat1, mean, trim = 0.1)

mpg cyl disp

20.98 6.00 209.20

53 of 56

Some Programming Tips

You can save yourself a great deal of heartache by following a few
simple guidelines.
• Keep your code tidy.

• Use comments to clarify what you are doing.

• When working with functions in RStudio, use the TAB key to quickly
access the documentation of the function’s arguments.

• Give your R scripts and objects meaningful names.

• Use a consistent directory structure and RStudio projects.

54 of 56

General Style Advice
Use common sense and BE CONSISTENT.
• Browse the tidyverse style guide.

◦ The point of style guidelines is to enforce a common vocabulary.
◦ You want people to concentrate on what you’re saying, not how you’re

saying it.

• If the code you add to a project/codebase looks drastically different
from the extant code, the incongruity will confuse readers and
collaborators.

Spacing and whitespace are your friends.

• a<-c(1,2,3,4,5)

• a <- c(1, 2, 3, 4, 5)

• At least put spaces around assignment operators and after every
comma!

55 of 56

https://style.tidyverse.org

References

Becker, R. A., & Chambers, J. M. (1984). S: an interactive environment for
data analysis and graphics. Monterey, CA: Wadsworth and
Brooks/Cole.

Becker, R. A., Chambers, J. M., & Wilks, A. R. (1988). The new S language.
London: Chapman & Hall.

Chambers, J. M. (1998). Programming with data: A guide to the S language.
New York: Springer Science & Business Media.

Chambers, J. M., & Hastie, T. J. (1992). Statistical models in s. London:
Chapman & Hall.

Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and
graphics. Journal of Computational and Graphical Statistics, 5(3),
299–314.

56 of 56

	The R Statistical Programming Language
	Data I/O
	Functions
	Iteration
	References

